Log in

Corrosion behavior of as-sprayed VC-CuNiCr based coatings developed by high-velocity oxygen fuel process

高速火焰喷涂VC-CuNiCr涂层的耐腐蚀性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this investigation, the high-velocity oxygen fuel (HVOF) deposition technique was implemented to administer vanadium carbide (VC) and cupronickel-chromium (CuNiCr) composite coatings onto SS316 stainless steel. The significance of this research lies in its direct relevance to addressing corrosion-related challenges in marine environments. Preceding and subsequent to the execution of electrochemical corrosion examinations within a 3.5% sodium chloride (NaCl) medium at ambient temperature, a comprehensive scrutiny of the surface topographies of both the coated and uncoated specimens was conducted through scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The outcomes manifest that the intermetallic binder composed of copper (Cu), nickel (Ni), and chromium (Cr) within the coatings undergoes deterioration under the influence of the NaCl medium, thereby inducing localized pitting corrosion phenomena across the substrate. Intriguingly, the incorporation of VC within the coating formulation conspicuously amplifies the corrosion resistance attributes of the treated surface, thereby ameliorating the occurrence of confined corrosive pits. Amidst the assortment of coatings subjected to scrutiny, the VC imbued surface attains the most favorable outcome, showcasing minimal corrosion rate of 72.38×10−3 mm/a. In contrast, the SS316 base substrate exhibits the most escalated corrosion rate calculated at 783.82×10−3 mm/a.

摘要

本研究采用高速火焰喷涂(HVOF)沉积技术, 将碳化钒(VC)和铜镍铬(CuNiCr)复合涂层应用于 SS316 不锈钢上, 以解决不锈钢在海洋环境中的腐蚀问题。在室温环境下, 在3.5%氯化钠溶液中进行 电化学腐蚀, 通过扫描电子显微镜(SEM)和能量色散光谱(EDS)对有涂层和未覆涂层样品的表面形貌进 行检测。结果表明, 涂层内由铜(Cu)、镍(Ni)和铬(Cr)组成的金属间黏合剂在氯化钠介质的影响下发生 变质, 从而导致出现衬底间的局部点蚀现象。有趣的是, 在涂层配方中加入碳化钒(VC)显著地增**了 表面的耐腐蚀性能, 从而阻止了密闭腐蚀凹坑的出现。在不同类的涂层中, 加入VC的效果最好, 最 小的腐蚀速率为72.38×10−3 mm/a, 相比之下, SS316基底的腐蚀速率最快。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. QUAN Shu-yi, SONG Ren-bo, SU Sheng-rui, et al. Grain boundary engineering prepared by iterative thermomechanical processing of nickel-saving austenitic stainless steel: Excellent corrosion resistance and mechanical properties [J]. Materials Characterization, 2023, 196: 112601. DOI: https://doi.org/10.1016/j.matchar.2022.112601.

    Article  Google Scholar 

  2. LYU **ang, BAI Yao-cai, LI Jian-lin, et al. Investigation of oxygen evolution reaction with 316 and 304 stainless-steel mesh electrodes in natural seawater electrolysis [J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109667. DOI: https://doi.org/10.1016/j.jece.2023.109667.

    Article  Google Scholar 

  3. HAMAD M W, HASSAN A R, ABDULLAH A S A. Materials and corrosion in seawater reverse osmosis plants: A review [J]. Malaysian Journal of Applied Sciences, 2023, 8(1): 74–94. DOI: https://doi.org/10.37231/myjas.2023.8.1.354.

    Article  Google Scholar 

  4. WANG Li, HE **ng, HU **, et al. Enhancing corrosion resistance of additive manufactured heterogeneous martensite stainless steel by hot isostatic pressing [J]. Materials Characterization, 2023, 203: 113137. DOI: https://doi.org/10.1016/j.matchar.2023.113137.

    Article  Google Scholar 

  5. NICHUL U, HIWARKAR V. Carbon dot complimentary green corrosion inhibitor for crystallographically textured Beta C titanium alloy for marine application: A state of art [J]. Journal of Alloys and Compounds, 2023, 962: 171116. DOI: https://doi.org/10.1016/j.jallcom.2023.171116.

    Article  Google Scholar 

  6. GHANDVAR H, JABBAR M A, PETRÜ M, et al. Role of YSZ particles on microstructural, wear, and corrosion behavior of Al-15%Mg2Si hybrid composite for marine applications [J]. Journal of Marine Science and Engineering, 2023, 11(5): 1050. DOI: https://doi.org/10.3390/jmse11051050.

    Article  Google Scholar 

  7. MAHARAJAN S, REX F M T, RAVINDRAN D, et al. Surface morphology studies and corrosion behaviour of plasma sprayed Cr3C2/8YSZ composite coating on SS316 [J]. Surface Topography: Metrology and Properties, 2023, 11(2): 025003. DOI: https://doi.org/10.1088/2051-672x/accbd7.

    Google Scholar 

  8. KUMAR V, VERMA R, KUMAR R. Analysis of the corrosion and wear of WC-10Co-4Cr+GNPs coating applied to HSLA DH-36 steel using HVOF [J]. Surface Topography: Metrology and Properties, 2022, 10(4): 045007. DOI: https://doi.org/10.1088/2051-672x/ac998e.

    Google Scholar 

  9. SINGH V, BANSAL A, SINGLA A K. Response surface methodology (RSM) based analysis on slurry erosion behavior of laser textured and PTFE sprayed VC+TiC coating deposited via HVOF [J]. Materials Today Communications, 2023, 36: 106843. DOI: https://doi.org/10.1016/j.mtcomm.2023.106843.

    Article  Google Scholar 

  10. KUMAR V, VERMA R. Slurry and sliding wear characterisation of HVOF sprayed WC10Co4Cr+graphene coating on textured marine steel [J]. Tribology International, 2023, 184: 108489. DOI: https://doi.org/10.1016/j.triboint.2023.108489.

    Article  Google Scholar 

  11. SINGH V, SINGLA A K, BANSAL A. Influence of TiC content on slurry erosion behaviour of HVOF sprayed titanium carbide and cupronickel-chromium based coatings [J]. Journal of Thermal Spray Technology, 2023, 32(6): 1739–1757. DOI: https://doi.org/10.1007/s11666-023-01613-2.

    Article  Google Scholar 

  12. SYKAM K, SIVANANDAN S, BASAK P. 1, 2, 3-triazole mediated, non-halogenated phosphorus containing protective coatings from castor oil: Flame retardant and anti-corrosion applications [J]. Progress in Organic Coatings, 2023, 178: 107475. DOI: https://doi.org/10.1016/j.porgcoat.2023.107475.

    Article  Google Scholar 

  13. THAKUR A, KAYA S, KUMAR A. Recent trends in the characterization and application progress of nano-modified coatings in corrosion mitigation of metals and alloys [J]. Applied Sciences, 2023, 13(2): 730. DOI: https://doi.org/10.3390/app13020730.

    Article  Google Scholar 

  14. MOMBER A W, LANGENKÄMPER D, MÖLLER T, et al. The exploration and annotation of large amounts of visual inspection data for protective coating systems on stationary marine steel structures [J]. Ocean Engineering, 2023, 278: 114337. DOI: https://doi.org/10.1016/j.oceaneng.2023.114337.

    Article  Google Scholar 

  15. AMENDOLA E, PALMIERI B, DELLO IACONO S, et al. Thermally mendable self-healing epoxy coating for corrosion protection in marine environments [J]. Materials, 2023, 16(5): 1775. DOI: https://doi.org/10.3390/ma16051775.

    Article  Google Scholar 

  16. CIEPLAK A, GDOURA A, GAY B, et al. New protective coatings against liquid zinc corrosion [J]. SN Applied Sciences, 2023, 5(5): 142. DOI: https://doi.org/10.1007/s42452-023-05319-6.

    Article  Google Scholar 

  17. SINGH V, SINGLA A K, BANSAL A. Influence of laser texturing along with PTFE topcoat on slurry and cavitation erosion resistance of HVOF sprayed VC coating [J]. Surface and Coatings Technology, 2023, 470: 129858. DOI: https://doi.org/10.1016/j.surfcoat.2023.129858.

    Article  Google Scholar 

  18. SINGH V, SINGLA A K, BANSAL A. Wetting and erosive behavior of VC-TiC+CuNi-Cr based coatings developed by HVOF: Role of laser texturing [J]. Engineering Failure Analysis, 2023, 152: 107479. DOI: https://doi.org/10.1016/j.engfailanal.2023.107479.

    Article  Google Scholar 

  19. SINGH V, SINGLA A K, BANSAL A. Impact of HVOF sprayed vanadium carbide (VC) based novel coatings on slurry erosion behaviour of hydro-machinery SS316 steel [J]. Tribology International, 2022, 176: 107874. DOI: https://doi.org/10.1016/j.triboint.2022.107874.

    Article  Google Scholar 

  20. BINAL G. Isothermal oxidation and hot corrosion behavior of HVOF sprayed 80Ni-20Cr coatings at 750°C [J]. Surface and Coatings Technology, 2023, 454: 129141. DOI: https://doi.org/10.1016/j.surfcoat.2022.129141.

    Article  Google Scholar 

  21. BUCHTÍK M, HASOŇOVÁ M, HORNÍK P, et al. Influence of laser remelting on the microstructure and corrosion behavior of HVOF-sprayed Fe-based coatings on magnesium alloy [J]. Materials Characterization, 2022, 194: 112343. DOI: https://doi.org/10.1016/j.matchar.2022.112343.

    Article  Google Scholar 

  22. LIN Nan, HE Yue-hui, WU Chong-hu, et al. Influence of TiC additions on the corrosion behaviour of WC-Co hardmetals in alkaline solution [J]. International Journal of Refractory Metals and Hard Materials, 2014, 46: 52–57. DOI: https://doi.org/10.1016/j.ijrmhm.2014.05.009.

    Article  Google Scholar 

  23. BASAK A K, CELIS J P, PONTHIAUX P, et al. Effect of nanostructuring and Al alloying on corrosion behaviour of thermal sprayed WC – Co coatings [J]. Materials Science and Engineering A, 2012, 558: 377–385. DOI: https://doi.org/10.1016/j.msea.2012.08.015.

    Article  Google Scholar 

  24. HUMAN A M, EXNER H E. Electrochemical behaviour of tungsten-carbide hardmetals [J]. Materials Science and Engineering A, 1996, 209(1–2): 180–191. DOI: https://doi.org/10.1016/0921-5093(95)10137-3.

    Article  Google Scholar 

  25. KUMAR V, VERMA R. Effect of GNP and laser-surface texturing on HVOF sprayed WC10Co4Cr coatings for high-wear resistance [J]. Tribology International, 2023, 178: 108057. DOI: https://doi.org/10.1016/j.triboint.2022.108057.

    Article  Google Scholar 

  26. SINGH V, SINGH I, BANSAL A, et al. Cavitation erosion behavior of high velocity oxy fuel (HVOF) sprayed (VC+ CuNi-Cr) based novel coatings on SS316 steel [J]. Surface and Coatings Technology, 2022, 432: 128052. DOI: https://doi.org/10.1016/j.surfcoat.2021.128052.

    Article  Google Scholar 

  27. CASTILLEJO F, OLAYA J, ALFONSO J. Wear and corrosion resistance of chromium-vanadium carbide coatings produced via thermo-reactive deposition [J]. Coatings, 2019, 9(4): 215. DOI: https://doi.org/10.3390/coatings9040215.

    Article  Google Scholar 

  28. KUMAR V, SINGH N K, VERMA R, et al. Corrosion behaviour of laser textured and WCCoCr+GNPs coated IS-2062 steel [J]. Diamond and Related Materials, 2023, 136: 109958. DOI: https://doi.org/10.1016/j.diamond.2023.109958.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SINGH Vikrant developed the overarching research goals and edited the draft of the manuscript. BANSAL Anuj conducted the literature review and wrote the manuscript. SINGLA Anil Kumar validated the proposed method with practical experiments and wrote the first draft of the manuscript. KUMAR Vijay edited the manuscript.

Corresponding author

Correspondence to Anuj Bansal.

Ethics declarations

SINGH Vikrant, BANSAL Anuj, SINGLA Anil Kumar and KUMAR Vijay edited the manuscript declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Bansal, A., Singla, A.K. et al. Corrosion behavior of as-sprayed VC-CuNiCr based coatings developed by high-velocity oxygen fuel process. J. Cent. South Univ. 31, 1385–1397 (2024). https://doi.org/10.1007/s11771-024-5645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5645-0

Key words

关键词

Navigation