Log in

Research progress of permanent ferrite magnet materials

永磁铁氧体材料研究进展

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness. The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials. This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years. The emergence of new raw material, the advancement of perparation methods and manufacturing techniques, and the potential applications of permanent ferrite materials are introduced and discussed. Specifically, nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources, and therefore it could be a promising development trendency.

摘要

永磁铁氧体材料凭借其优异的磁性能和高性价比而应用广泛。随着电动汽车和智能家电领域的 快速发展,永磁铁氧体材料在制备工艺及理论研究方面也迎来了新的发展机遇。本文围绕原料的更新 换代、技术革新及涉及的应用领域等方面进行介绍和评述。原料方面,高纯铁精矿因其储量大、加工 成本低及成分稳定等特点而备受关注。技术革新方面,离子取代和组合添加剂的使用能有效提升永磁 铁氧体磁性能。放电等离子烧结及微波烧结等新型烧结方式兼具高效和低能耗的特点,但由于其生产 成本高、设备难以大型化,推行工业化仍需进一步研究。永磁铁氧体材料具有好的耐腐蚀性、温度稳 定性等优势,除了在电机领域得到了广泛应用,**些年在微波材料和水处理领域也得初步应用。尤其 是纳米化技术,可通过阻止多畴结构的形成来实现得到铁氧体材料的高性能,极大程度降低材料对稀 土资源的依赖,被认为是未来的方展方向之一

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI Shu-hua. Origine de la boussole [J]. Isis, 1954, 45(1): 78–94. DOI: https://doi.org/10.1086/348288.

    Article  Google Scholar 

  2. NEEDHAM J, WANG L, LU G. Science and civilisation in China: Physics and physical Technology. Civil Engineering and Nautics[M]. Cambridge University Press, 1971.

  3. MILLS A A. The lodestone: History, physics, and formation [J]. Annals of Science, 2004, 61(3): 273–319. DOI: https://doi.org/10.1080/00033790310001642812.

    Article  Google Scholar 

  4. KEITHLEY J F. The story of electrical and magnetic measurements: from 500 B. C. to the 1940s [M]. New York: IEEE Press, 1999.

    Book  Google Scholar 

  5. MARTIROSYAN K S, MARTIROSYAN N S, CHALYKH A E. Structure and properties of hard-magnetic Barium, strontium, and lead ferrites [J]. Inorganic Materials, 2003, 39(8): 866–870. DOI: https://doi.org/10.1023/A:1025037716108.

    Article  Google Scholar 

  6. VINNIK D A, ZHIVULIN V E, SHERSTYUK D P, et al. Electromagnetic properties of zinc-nickel ferrites in the frequency range of 0.05–10 GHz [J]. Materials Today Chemistry, 2021, 20: 100460. DOI: https://doi.org/10.1016/j.mtchem.2021.100460.

    Article  Google Scholar 

  7. ZDOROVETS M V, KOZLOVSKIY A L, SHLIMAS D I, et al. Phase transformations in FeCo-Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(12): 16694–16705. DOI: https://doi.org/10.1007/s10854-021-06226-5.

    Google Scholar 

  8. TRUKHANOV S V, TRUKHANOV A V, KOSTISHIN V G, et al. Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12−xAlxO19 (x≤1.2) at room temperature [J]. JETP Letters, 2016, 103(2): 100–105. DOI: https://doi.org/10.1134/S0021364016020132.

    Article  Google Scholar 

  9. GRANADOS-MIRALLES C, JENUŠ P. On the potential of hard ferrite ceramics for permanent magnet technology—A review on sintering strategies [J]. Journal of Physics D: Applied Physics, 2021, 54(30): 303001. DOI: https://doi.org/10.1088/1361-6463/abfad4.

    Article  Google Scholar 

  10. LIU Z. Fundamental principles and advanced technologies of permanent magnetic materials [M]. South China University of Technology Press, 2017.

  11. TRUKHANOV A V, TRUKHANOV S V, PANINA L V, et al. Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics [J]. Ceramics International, 2017, 43(7): 5635–5641. DOI: https://doi.org/10.1016/j.ceramint.2017.01.096.

    Article  Google Scholar 

  12. VITALII T, BONDYAKOV A S, SERGEI T, et al. Microscopic mechanism of ferroelectric properties in Barium hexaferrites [J]. Journal of Alloys and Compounds, 2023, 931: 167433. DOI: https://doi.org/10.1016/j.jallcom.2022.167433.

    Article  Google Scholar 

  13. AGAYEV F G, TRUKHANOV S V, TRUKHANOV A V, et al. Study of structural features and thermal properties of Barium hexaferrite upon indium do** [J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(24): 14107–14114. DOI: https://doi.org/10.1007/s10973-022-11742-5.

    Article  Google Scholar 

  14. FENG **n-shuo. Domestic Iron ore market review 2023 and outlook 2024[EB/OL]. Https://Tks.Mysteel.Com/

  15. SEMAIDA ASHRAF M, DARWISH MOUSTAFA A, SALEM MOHAMED M, et al. Impact of Nd3+ substitutions on the structure and magnetic properties of nanostructured SrFe12O19 hexaferrite [J]. Nanomaterials, 2022, 12(19): 3452.

    Article  Google Scholar 

  16. SURASHE V K, WAGHULE N N, RAUT A V, et al. Ceramic synthesis and X-ray diffraction characterization of copper ferrite [C]// AIP Conference Proceedings: AIP Publishing, 2021.

  17. HENAISH A. Physical and spectral studies of Mg-Zn ferrite prepared by different methods [J]. Arab Journal of Nuclear Sciences and Applications, 2019. DOI: https://doi.org/10.21608/ajnsa.2019.11102.1195.

  18. ZHENG **g-wu, ZHENG Dan-ni, QIAO L, et al. High permeability and low core loss Fe-based soft magnetic composites with Co-Ba composite ferrite insulation layer obtained by sol-gel method [J]. Journal of Alloys and Compounds, 2022, 893: 162107. DOI: https://doi.org/10.1016/j.jallcom.2021.162107.

    Article  Google Scholar 

  19. KARTHIKEYAN P, VIGNESHWARAN S, PREETHI J, et al. Preparation of novel cobalt ferrite coated-porous carbon composite by simple chemical co-precipitation method and their mechanistic performance [J]. Diamond & Related Materials, 2020, 108(prepublish): 107922. DOI: https://doi.org/10.1016/j.diamond.2020.107922.

    Article  Google Scholar 

  20. ANDHARE D D, ANDHARE D D, JADHAV S A, et al. Structural and chemical properties of ZnFe2O4 nanoparticles synthesised by chemical co-precipitation technique [J]. Journal of Physics Conference Series, 2020, 1644(1): 12014-.

    Article  Google Scholar 

  21. RENDÓN-ANGELES J C, YOKO A, SEONG G, et al. Process intensification for fast SrFe12O19 nanoparticle production from celestite under supercritical hydrothermal conditions [J]. The Journal of Supercritical Fluids, 2023, 192: 105810. DOI: https://doi.org/10.1016/j.supflu.2022.105810.

    Article  Google Scholar 

  22. REFAT N M, NASSAR M Y, SADEEK S A. A controllable one-pot hydrothermal synthesis of spherical cobalt ferrite nanoparticles: Synthesis, characterization, and optical properties [J]. RSC Advances, 2022, 12(38): 25081–25095. DOI: https://doi.org/10.1039/d2ra03345c.

    Article  Google Scholar 

  23. SHEBL A, HASSAN A, SALAMA D M, et al. Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L) [J]. Heliyon, 2020, 6(3): e03596.

    Article  Google Scholar 

  24. WANG Zi-han, YANG Min, ZHENG Bi-yu, et al. Tunable magnetization of single domain M-type Barium hexagonal ferrite nano powders by Co-Ti substitution via chemical co-precipitation plus molten salts method [J]. Ceramics International, 2022, 48(19): 27779–27784. DOI: https://doi.org/10.1016/j.ceramint.2022.06.079.

    Article  Google Scholar 

  25. MOUHIB Y, BELAICHE M. Cobalt nano-ferrite synthesized by molten salt process: Structural, morphological and magnetic studies [J]. Applied Physics A, 2021, 127(8): 613. DOI: https://doi.org/10.1007/s00339-021-04758-5.

    Article  Google Scholar 

  26. LEON-FLORES J, PEREZ-MAZARIEGO J L, OLMEDORESENDIZ E T, et al. Rapid synthesis of nickel ferrite nanoparticles by the molten salt method [J]. Materials Research Express, 2023, 10(7): 076102. DOI: https://doi.org/10.1088/2053-1591/ace593.

    Article  Google Scholar 

  27. JANASI S, EMURA M, LANDGRAF F, et al. The effects of synthesis variables on the magnetic properties of coprecipitated Barium ferrite powders [J]. Journal of Magnetism and Magnetic Materials, 2002, 238(2): 168–172.

    Article  Google Scholar 

  28. KADYRZHANOV K K, SHLIMAS D I, KOZLOVSKIY A L, et al. Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(14): 11729–11740. DOI: https://doi.org/10.1007/s10854-020-03724-w.

    Google Scholar 

  29. van der ZAAG P J, FITCHOROVA O, SOKOLOV A, et al. Ferrite films: Deposition methods and properties in view of applications [C]// Modern Ferrites: Basic Principles, Processing and Properties. 2022, 1: 295–411. DOI: https://doi.org/10.1002/9781118971499.ch10.

    Article  Google Scholar 

  30. ANDREI I S, GEORGIANA B, SILVIU G. Rare earth effect on laser produced plasma dynamics during pulsed laser deposition of doped cobalt ferrite [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 198: 106565. DOI: https://doi.org/10.1016/j.sab.2022.106565.

    Article  Google Scholar 

  31. TRUKHANOV S V, TRUKHANOV A V, TURCHENKO V A, et al. Magnetic and dipole moments in indium doped Barium hexaferrites [J]. Journal of Magnetism and Magnetic Materials, 2018, 457: 83–96. DOI: https://doi.org/10.1016/j.jmmm.2018.02.078.

    Article  Google Scholar 

  32. KOOLS F, MOREL A, TENAUD P, et al. La-Co substituted Sr and Ba M-type ferrites magnet properties versus intrinsic and microstructural factors [C]// Proc. 8th Int. Conf. Ferrites (ICF-8), 2000: 437–439.

  33. GRÖSSINGER R, BLANCO C T, KÜPFERLING M, et al. Magnetic properties of a new family of rare-earth substituted ferrites [J]. Physica B: Physics of Condensed Matter, 2003, 327(2–4): 202–207.

    Article  Google Scholar 

  34. MOREL A, KOOLS F, TENAUD P, et al. Modeling of La-Co Substituted M-Type Ferrite Coercivity of Sr1−xLaxFe12−xCoxO19 [J]. Icf-8: Kyoto, Japan, 2000: 434–436.

  35. MOREL A, LE BRETON J, KREISEL J, et al. Sublattice occupation in Sr1−xLaxFe12−xCoxO19 hexagonal ferrite analyzed by Mössbauer spectrometry and Raman spectroscopy [J]. Journal of Magnetism and Magnetic Materials, 2002, 242(P2): 1405–1407.

    Article  Google Scholar 

  36. KOOLS F, MOREL A, GRÖSSINGER R, et al. LaCo-substituted ferrite magnets, a new class of high-grade ceramic magnets; intrinsic and microstructural aspects [J]. Journal of Magnetism and Magnetic Materials, 2002, 242(P2): 1270–1276.

    Article  Google Scholar 

  37. TENAUD P, MOREL A, KOOLS F, et al. Recent improvement of hard ferrite permanent magnets based on La-Co substitution [J]. Journal of Alloys and Compounds, 2003, 370(1): 331–334.

    Google Scholar 

  38. SHARMA P, VERMA A, SIDHU R, et al. Effect of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthogonal array design [J]. Journal of Magnetism and Magnetic Materials, 2006, 307(1): 157–164.

    Article  Google Scholar 

  39. YANG Yu-jie, LIU **an-song, JIN Da-li. Influence of heat treatment temperatures on structural and magnetic properties of Sr0.50Ca0.20La0.30Fe11.15Co0.25O19 hexagonal ferrites [J]. Journal of Magnetism and Magnetic Materials, 2014, 364: 11–17. DOI: https://doi.org/10.1016/j.jmmm.2014.04.012.

    Article  Google Scholar 

  40. HU Ji-yu, LIU Chao-cheng, KAN Xu-cai, et al. Structure and magnetic performance of Gd substituted Sr-based hexaferrites [J]. Journal of Alloys and Compounds, 2020, 820: 153180. DOI: https://doi.org/10.1016/j.jallcom.2019.153180.

    Article  Google Scholar 

  41. CH R, SUBRAHMANYA SARMA K, CH S, et al. Effect of La-Cu co-substitution on structural, microstructural and magnetic properties of M-type strontium hexaferrite (Sr1−xLaxFe12−xCuxO19) [J]. Inorganic Chemistry Communications, 2021, 134: 109053. DOI: https://doi.org/10.1016/j.inoche.2021.109053.

    Article  Google Scholar 

  42. HUANG C C, JIANG A, HUNG Y, et al. Influence of CaCO3 and SiO2 additives on magnetic properties of M-type Sr ferrites [J]. Journal of Magnetism and Magnetic Materials, 2018, 451: 288–294. DOI: https://doi.org/10.1016/J.JMMM.2017.09.070.

    Article  Google Scholar 

  43. GORDANI G R, GHASEMI A, SAIDI A-li. Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method [J]. Ceramics International, 2014, 40(3): 4945–4952.

    Article  Google Scholar 

  44. REZLESCU N, DOROFTEI C, REZLESCU E, et al. The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19 [J]. Journal of Alloys and Compounds, 2007, 451(1): 492–496.

    Google Scholar 

  45. KHADEMI F, POORBAFRANI A, KAMELI P, et al. Structural, magnetic and microwave properties of Eu-doped Barium hexaferrite powders [J]. Journal of Superconductivity and Novel Magnetism, 2012, 25(2): 525–531. DOI: https://doi.org/10.1007/s10948-011-1323-1.

    Article  Google Scholar 

  46. FU Y, LIN C H. Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwave-induced combustion process [J]. Journal of Alloys and Compounds, 2005, 386: 222–227. DOI: https://doi.org/10.1016/J.JALLCOM.2004.04.148.

    Article  Google Scholar 

  47. QIAO Liang, YOU Li-shun, ZHENG **g-wu, et al. The magnetic properties of strontium hexaferrites with La-Cu substitution prepared by SHS method [J]. Journal of Magnetism and Magnetic Materials, 2007, 318(1–2): 74–78. DOI: https://doi.org/10.1016/j.jmmm.2007.04.028.

    Article  Google Scholar 

  48. XU **, HAN **-jiang, ZHAO Hong-tao, et al. Effect of stoichiometry on the phase formation and magnetic properties of BaFe12O19 nanoparticles by reverse micelle technique [J]. Materials Letters, 2008, 62(8–9): 1305–1308. DOI: https://doi.org/10.1016/j.matlet.2007.08.039.

    Article  Google Scholar 

  49. LIU Bo, ZHANG Shen-gen, STEENARI B M, et al. Controlling the composition and magnetic properties of nano-SrFe12O19 powder synthesized from oily cold mill sludge by the citrate precursor method [J]. Materials, 2019, 12(8): 1250. DOI: https://doi.org/10.3390/ma12081250.

    Article  Google Scholar 

  50. ASHIQ M N, QURESHI R B, MALANA M A, et al. Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites [J]. Journal of Alloys and Compounds, 2014, 617: 437–443. DOI: https://doi.org/10.1016/j.jallcom.2014.08.015.

    Article  Google Scholar 

  51. WANG H Z, YAO B, XU Y, et al. Improvement of the coercivity of strontium hexaferrite induced by substitution of Al3+ ions for Fe3+ ions [J]. Journal of Alloys and Compounds, 2012, 537: 43–49. DOI: https://doi.org/10.1016/j.jallcom.2012.05.063.

    Article  Google Scholar 

  52. AUWAL I A, GÜNGÜNEŞ H, BAYKAL A, et al. Structural, morphological, optical, cation distribution and Mössbauer analysis of Bi3+ substituted strontium hexaferrite [J]. Ceramics International, 2016, 42(7): 8627–8635. DOI: https://doi.org/10.1016/j.ceramint.2016.02.094.

    Article  Google Scholar 

  53. YANG Z, WANG C S, LI X H, et al. (Zn, Ni, Ti) substituted Barium ferrite particles with improved temperature coefficient of coercivity [J]. Materials Science and Engineering B, 2002, 90(1–2): 142–145. DOI: https://doi.org/10.1016/s0921-5107(01)00925-4.

    Article  Google Scholar 

  54. HUANG **n, LIU **an-song, YANG Yu-jie, et al. Microstructure and magnetic properties of Ca-substituted M-type SrLaCo hexagonal ferrites [J]. Journal of Magnetism and Magnetic Materials, 2015, 378: 424–428. DOI: https://doi.org/10.1016/j.jmmm.2014.09.049.

    Article  Google Scholar 

  55. LIU Chao-cheng, LIU **an-song, FENG Shuang-jiu, et al. Microstructure and magnetic properties of M-type strontium hexagonal ferrites with Y-Co substitution [J]. Journal of Magnetism and Magnetic Materials, 2017, 436: 126–129. DOI: https://doi.org/10.1016/j.jmmm.2017.04.040.

    Article  Google Scholar 

  56. ASHIQ M N, SHAKOOR S, NAJAM-UL-HAQ M, et al. Structural, electrical, dielectric and magnetic properties of Gd-Sn substituted Sr-hexaferrite synthesized by sol-gel combustion method [J]. Journal of Magnetism and Magnetic Materials, 2015, 374: 173–178. DOI: https://doi.org/10.1016/j.jmmm.2014.08.020.

    Article  Google Scholar 

  57. MOON K S, KANG Y M. Structural and magnetic properties of Ca-Mn-Zn-substituted M-type Sr-hexaferrites [J]. Journal of the European Ceramic Society, 2016, 36(14): 3383–3389. DOI: https://doi.org/10.1016/j.jeurceramsoc.2016.05.045.

    Article  Google Scholar 

  58. BARRERA V, BETANCOURT I. M-type hexaferrites with enhanced coercivity [J]. IEEE Transactions on Magnetics, 2013, 49(8): 4630–4633. DOI: https://doi.org/10.1109/TMAG.2013.2259151.

    Article  Google Scholar 

  59. YANG Yu-jie, WANG Fan-hou, SHAO Ju-xiang, et al. Structural, spectral, magnetic, and electrical properties of Gd-Co-co-substituted M-type Ca-Sr hexaferrites synthesized by the ceramic method [J]. Applied Physics A, 2018, 125(1): 37. DOI: https://doi.org/10.1007/s00339-018-2339-1.

    Article  Google Scholar 

  60. LIU **an-song, ZHONG Wei, YANG Sen, et al. Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites [J]. Journal of Magnetism and Magnetic Materials, 2002, 238(2–3): 207–214. DOI: https://doi.org/10.1016/s0304-8853(01)00914-3.

    Article  Google Scholar 

  61. LIU **an-song, HERNÁNDEZ-GÓMEZ P, HUANG Kai, et al. Research on La3+-Co2+-substituted strontium ferrite magnets for high intrinsic coercive force [J]. Journal of Magnetism and Magnetic Materials, 2006, 305(2): 524–528. DOI: https://doi.org/10.1016/j.jmmm.2006.02.096.

    Article  Google Scholar 

  62. LECHEVALLIER L, LE BRETON J M, TEILLET J, et al. Mössbauer investigation of Sr1−xLaxFe12−yCoyO19 ferrites [J]. Physica B: Condensed Matter, 2003, 327(2–4): 135–139. DOI: https://doi.org/10.1016/s0921-4526(02)01712-x.

    Article  Google Scholar 

  63. LECHEVALLIER L, LE BRETON J M, WANG J F, et al. Structural and Mössbauer analyses of ultrafine Sr1xLaxFe12xZnxO19 and Sr1xLaxFe12xCoxO19 hexagonal ferrites synthesized by chemical co-precipitation [J]. Journal of Physics: Condensed Matter, 2004, 16(29): 5359–5376. DOI: https://doi.org/10.1088/0953-8984/16/29/025.

    Google Scholar 

  64. LIU Ying, DREW M G B, LIU Yue, et al. Preparation and magnetic properties of La-Mn and La-Co doped Barium hexaferrites prepared via an improved co-precipitation/molten salt method [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(21): 3342–3345. DOI: https://doi.org/10.1016/j.jmmm.2010.06.022.

    Article  Google Scholar 

  65. SHARMA P, VERMA A, SIDHU R K, et al. Influence of Nd3+ and Sm3+ substitution on the magnetic properties of strontium ferrite sintered magnets [J]. Journal of Alloys and Compounds, 2003, 361(1–2): 257–264. DOI: https://doi.org/10.1016/s0925-8388(03)00390-6.

    Article  Google Scholar 

  66. IIDA K, MINACHI Y, MASUZAWA K, et al. Hgh-performance ferrite magnets: M-type Sr-ferrite containing lanthanum and cobalt [J]. Journal of the Magnetics Society of Japan, 1999, 23(4–2): 1093–1096. DOI: https://doi.org/10.3379/jmsjmag.23.1093.

    Article  Google Scholar 

  67. PANG Zhi-yong, ZHANG **-jian, DING Bo-ming, et al. Microstructure and magnetic microstructure of La+Co doped strontium hexaferrites [J]. Journal of Alloys and Compounds, 2010, 492(1–2): 691–694. DOI: https://doi.org/10.1016/j.jallcom.2009.12.019.

    Article  Google Scholar 

  68. CHEN Z, WANG F, YAN S, et al. Microstructure and magnetic properties of M-type Sr0.61–Xla0.39Caxfe11. 7Co0.3O19 hexaferrite prepared by microwave calcination [J]. Materials Science and Engineering: B, 2014, 182: 69–73. DOI: https://doi.org/10.1016/j.mseb.2013.11.027

    Article  Google Scholar 

  69. ASTI G, CARBUCICCHIO M, DERIU A, et al. Magnetic characterization of Ca substituted Ba and Sr hexaferrites [J]. Journal of Magnetism and Magnetic Materials, 1980, 20(1): 44–46. DOI: https://doi.org/10.1016/0304-8853(80)90523-5.

    Article  Google Scholar 

  70. SEIFERT D, TÖPFER J, LANGENHORST F, et al. Synthesis and magnetic properties of La-substituted M-type Sr hexaferrites [J]. Journal of Magnetism and Magnetic Materials, 2009, 321(24): 4045–4051. DOI: https://doi.org/10.1016/j.jmmm.2009.07.088.

    Article  Google Scholar 

  71. KIKUCHI T, NAKAMURA T, YAMASAKI T, et al. Magnetic properties of La–Co substituted M-type strontium hexaferrites prepared by polymerizable complex method [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(16): 2381–2385. DOI: https://doi.org/10.1016/j.jmmm.2010.02.041.

    Article  Google Scholar 

  72. WIESINGER G, MÜLLER M, GRÖSSINGER R, et al. Substituted ferrites studied by nuclear methods [J]. Physica Status Solidi(a), 2002, 189(2): 499–508. DOI: https://doi.org/10.1002/1521-396X(200202)189:23.0.CO;2-H

    Article  Google Scholar 

  73. TÖPFER J, SCHWARZER S, SENZ S, et al. Influence of Sio2 and Cao additions on the microstructure and magnetic properties of sintered Sr-hexaferrite [J]. Journal of the European Ceramic Society, 2005, 25(9): 1681–1688. DOI: https://doi.org/10.1016/j.jeurceramsoc.2004.06.003

    Article  Google Scholar 

  74. WIESINGER G, MÜLLER M, GÖSSINGER R, et al. Substituted ferrites studied by nuclear methods [J]. Physica Status Solidi (a), 2002, 189(2): 499–508. DOI: https://doi.org/10.1002/1521-396x(200202)189:2<499:aid-pssa499>3.0.co;2-h.

    Article  Google Scholar 

  75. RAVINDER D, SHALINI P, MAHESH P, et al. Thermoelectric power studies of La-Co substituted Sr M-type hexagonal ferrites [J]. Journal of Alloys and Compounds, 2004, 363(1–2): 68–74. DOI: https://doi.org/10.1016/s0925-8388(03)00478-x.

    Article  Google Scholar 

  76. LEE Ji-min, LEE E J, HWANG T Y, et al. Anisotropic characteristics and improved magnetic performance of Ca-La-Co-substituted strontium hexaferrite nanomagnets [J]. Scientific Reports, 2020, 10: 15929. DOI: https://doi.org/10.1038/s41598-020-72608-0.

    Article  Google Scholar 

  77. KIM M, LEE K, BAE C, et al. Magnetic and morphological properties of Ca substituted M-type hexaferrite powders synthesized by the molten salt method [J]. AIP Advances, 2021, 11(5): 055310. DOI: https://doi.org/10.1063/5.0041533.

    Article  Google Scholar 

  78. HUANG C C, LIN S H, MO C C, et al. Development of optimum preparation conditions of Fe-deficient M-type Ca-Sr-La system hexagonal ferrite magnet [J]. IEEE Transactions on Magnetics, 2021, 57(2): 2101307. DOI: https://doi.org/10.1109/TMAG.2020.3042095.

    Article  Google Scholar 

  79. HUANG C C, MO C C, HSIAO T H, et al. Preparation and magnetic properties of high performance Ca-Sr based M-type hexagonal ferrites [J]. Results in Materials, 2020, 8: 100150. DOI: https://doi.org/10.1016/j.rinma.2020.100150.

    Article  Google Scholar 

  80. YANG Y J, LIU X S. Substitution effects of calcium to microstructures and magnetic properties of Sr0.70−xCaxLa0.30Fe11.72Cu0.28O19 hexaferrites [J]. Materials Technology, 2014, 29(5): 307–312. DOI: https://doi.org/10.1179/1753555714y.0000000164.

    Article  Google Scholar 

  81. LIU **an-song, ZHONG Wei, GU Ben-xi, et al. Influences of rare earth La3+ substitution on structure and Magnetic properties of M-type strontium ferrites [J]. Rare Metal Materials and Engineering, 2002, 31(5): 385–388.

    Google Scholar 

  82. THAKUR A, SINGH R R, BARMAN P B. Structural and magnetic properties of La3+ substituted strontium hexaferrite nanoparticles prepared by citrate precursor method [J]. Journal of Magnetism and Magnetic Materials, 2013, 326: 35–40. DOI: https://doi.org/10.1016/j.jmmm.2012.08.038.

    Article  Google Scholar 

  83. REHMAN K M U, RIAZ M, LIU **an-song, et al. Magnetic properties of Ce doped M-type strontium hexaferrites synthesized by ceramic route [J]. Journal of Magnetism and Magnetic Materials, 2019, 474: 83–89. DOI: https://doi.org/10.1016/j.jmmm.2018.10.087.

    Article  Google Scholar 

  84. HESSIEN M M, EL-BAGOURY N, MAHMOUD M H H, et al. Implementation of La3+ ion substituted M-type strontium hexaferrite powders for enhancement of magnetic properties [J]. Journal of Magnetism and Magnetic Materials, 2020, 498: 166187. DOI: https://doi.org/10.1016/j.jmmm.2019.166187.

    Article  Google Scholar 

  85. UNAL B, ALMESSIERE M, SLIMANI Y, et al. The conductivity and dielectric properties of neobium substituted Sr-hexaferrites [J]. Nanomaterials, 2019, 9(8): 1168. DOI: https://doi.org/10.3390/nano9081168.

    Article  Google Scholar 

  86. ULLAH Z, ATIQ S, NASEEM S. Influence of Pb do** on structural, electrical and magnetic properties of Sr-hexaferrites [J]. Journal of Alloys and Compounds, 2013, 555: 263–267. DOI: https://doi.org/10.1016/j.jallcom.2012.12.061.

    Article  Google Scholar 

  87. OUNNUNKAD S. Improving magnetic properties of Barium hexaferrites by La or Pr substitution [J]. Solid State Communications, 2006, 138(9): 472–475. DOI: https://doi.org/10.1016/j.ssc.2006.03.020.

    Article  Google Scholar 

  88. HESSIEN M M, EL-BAGOURY N, MAHMOUD M H H, et al. Dominating the structural, microstructural, and magnetic features of Li+-substituted strontium hexaferrite (Sr1−xLi2xFe12O19) [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(12): 16565–16576. DOI: https://doi.org/10.1007/s10854-021-06212-x.

    Google Scholar 

  89. ALI I, ISLAM M U, AWAN M S, et al. Effect of Tb3+ substitution on the structural and magnetic properties of M-type hexaferrites synthesized by sol-gel auto-combustion technique [J]. Journal of Alloys and Compounds, 2013, 550: 564–572. DOI: https://doi.org/10.1016/j.jallcom.2012.10.121.

    Article  Google Scholar 

  90. ZHANG Cong, FENG Shuang-jiu, KAN Xu-cai, et al. Structure and magnetic properties of Al3+ substituted M-type SrLaCo hexaferrite [J]. Journal of Solid State Chemistry, 2023, 321: 123927. DOI: https://doi.org/10.1016/j.jssc.2023.123927.

    Article  Google Scholar 

  91. HUSSAIN S, ANIS-UR-REHMAN M, MAQSOOD A, et al. The effect of SiO2 addition on structural, magnetic and electrical properties of strontium hexa-ferrites [J]. Journal of Crystal Growth, 2006, 297(2): 403–410. DOI: https://doi.org/10.1016/j.jcrysgro.2006.10.191.

    Article  Google Scholar 

  92. KANEKO Y, ANAMOTO S, HAMAMURA A. Improvement of magnetic properties of the permanent magnet: Effect of CaO and SiO2 additives on the sintered compact of Sr-ferrite [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1987, 34(4): 169–174. DOI: https://doi.org/10.2497/jjspm.34.169.

    Article  Google Scholar 

  93. KANEKO Y, ANAMOTO S, HAMAMURA A. Improvement of magnetic properties of the permanent magnet; Effect of Al2O3 and Cr2O3 additives on Sr-ferrite [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1987, 34(7): 318–324. DOI: https://doi.org/10.2497/jjspm.34.318.

    Article  Google Scholar 

  94. BERTAUT E F, DESCHAMPS A, PAUTHENET R, et al. Substitution dans les hexaferrites de l’ion Fe3+ par Al3+, Ga3+, Cr3+ [J]. Journal De Physique et Le Radium, 1959, 20(2 – 3): 404–408. DOI: https://doi.org/10.1051/jphysrad:01959002002-3040400.

    Article  Google Scholar 

  95. VIDYAWATHI S S, AMARESH R, SATAPATHY L N. Effect of boric acid sintering aid on densification of Barium ferrite [J]. Bulletin of Materials Science, 2002, 25(6): 569–572. DOI: https://doi.org/10.1007/BF02710553.

    Article  Google Scholar 

  96. MUSHTAQ M W. Synthesis, structural and biological studies of cobalt ferrite nanoparticles [J]. Environmental Research, 2023, 231: 116241. DOI: https://doi.org/10.1016/j.envres.2023.116241.

    Google Scholar 

  97. NAZIR A, IMRAN M, KANWAL F, et al. Degradation of cefadroxil drug by newly designed solar light responsive alcoholic template-based lanthanum ferrite nanoparticles [J]. Environmental Research, 2023, 231(Pt3): 116241. DOI: https://doi.org/10.1016/j.envres.2023.116241.

    Article  Google Scholar 

  98. JIANG Shuai, LIU **an-song, REHMAN K M U, et al. Synthesis and characterization of Sr1−xYxFe12O19 hexaferrites prepared by solid-state reaction method [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(12): 12919–12924. DOI: https://doi.org/10.1007/s10854-016-5428-y.

    Google Scholar 

  99. KANEKO Y, KITAJIMA K, TAKUSAGAWA N. Effects of SrO and Cr2O3 additives on magnetic properties of sintered Sr-ferrite [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1992, 39(11): 948–952. DOI: https://doi.org/10.2497/jjspm.39.948.

    Article  Google Scholar 

  100. LYSENKO E N, MALYSHEV A V, VLASOV V A, et al. Microstructure and thermal analysis of lithium ferrite pre-milled in a high-energy ball mill [J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(1): 127–133. DOI: https://doi.org/10.1007/s10973-018-7549-4.

    Article  Google Scholar 

  101. ZHAO Xu-zhe, SHAW L. Modeling and analysis of high-energy ball milling through attritors [J]. Metallurgical and Materials Transactions A, 2017, 48(9): 4324–4333. DOI: https://doi.org/10.1007/s11661-017-4195-6.

    Article  Google Scholar 

  102. GENG Z W, HASEEB M, QUAN X K, et al. Magnetic performance enhancement in La-Ca-Co doped SrFe12O19 ferrite permanent magnets via cold isostatic pressing [J]. Materials Research Express, 2020, 7(4): 046107. DOI: https://doi.org/10.1088/2053-1591/ab89da.

    Article  Google Scholar 

  103. EIKELAND A Z, STINGACIU M, GRANADOS-MIRALLES C, et al. Enhancement of magnetic properties by spark plasma sintering of hydrothermally synthesised SrFe12O19 [J]. CrystEngComm, 2017, 19(10): 1400–1407. DOI: https://doi.org/10.1039/C6CE02275H.

    Article  Google Scholar 

  104. LIU Chao-cheng, KAN Xu-cai, LIU **an-song, et al. Firstorder magnetic transition induced by structural transition in hexagonal structure [J]. Journal of Magnetism and Magnetic Materials, 2020, 494: 165821. DOI: https://doi.org/10.1016/j.jmmm.2019.165821.

    Article  Google Scholar 

  105. ADESINA O T, SADIKU E R, JAMIRU T, et al. Polylactic acid/graphene nanocomposite consolidated by SPS technique [J]. Journal of Materials Research and Technology, 2020, 9(5): 11801–11812. DOI: https://doi.org/10.1016/j.jmrt.2020.08.064.

    Article  Google Scholar 

  106. PEREZ-MAQUEDA L A, GIL-GONZALEZ E, PEREJON A, et al. Flash sintering of highly insulating nanostructured phase-pure BiFeO3 [J]. Journal of the American Ceramic Society, 2017, 100(8): 3365–3369. DOI: https://doi.org/10.1111/jace.14990.

    Article  Google Scholar 

  107. FRASNELLI M, SGLAVO V M. Flash sintering of tricalcium phosphate (TCP) bioceramics [J]. Journal of the European Ceramic Society, 2018, 38(1): 279–285. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.08.004.

    Article  Google Scholar 

  108. YU J H, MCWILLIAMS B A, PARKER T C. Densification behavior of flash sintered boron suboxide [J]. Journal of the American Ceramic Society, 2018, 101(11): 4976–4982. DOI: https://doi.org/10.1111/jace.15776.

    Article  Google Scholar 

  109. YU Min, SAUNDERS T, GRASSO S, et al. Magnéli phase titanium suboxides by Flash Spark Plasma Sintering [J]. Scripta Materialia, 2018, 146: 241–245. DOI: https://doi.org/10.1016/j.scriptamat.2017.11.044.

    Article  Google Scholar 

  110. CASTLE E, SHERIDAN R, GRASSO S, et al. Rapid sintering of anisotropic, nanograined Nd-Fe-B by flash-spark plasma sintering [J]. Journal of Magnetism and Magnetic Materials, 2016, 417: 279–283. DOI: https://doi.org/10.1016/j.jmmm.2016.05.067.

    Article  Google Scholar 

  111. CASTLE E, SHERIDAN R, ZHOU Wei, et al. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering [J]. Scientific Reports, 2017, 7: 11134. DOI: https://doi.org/10.1038/s41598-017-11660-9.

    Article  Google Scholar 

  112. DOWNS J A, SGLAVO V M. Electric field assisted sintering of cubic zirconia at 390°C [J]. Journal of the American Ceramic Society, 2013, 96(5): 1342–1344. DOI: https://doi.org/10.1111/jace.12281.

    Article  Google Scholar 

  113. AKBARI-FAKHRABADI A, MANGALARAJA R V, SANHUEZA F A, et al. Nanostructured Gd-CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting [J]. Journal of Power Sources, 2012, 218: 307–312. DOI: https://doi.org/10.1016/j.jpowsour.2012.07.005.

    Article  Google Scholar 

  114. BIESUZ M, DELL’AGLI G, SPIRIDIGLIOZZI L, et al. Conventional and field-assisted sintering of nanosized Gd-doped ceria synthesized by co-precipitation [J]. Ceramics International, 2016, 42(10): 11766–11771. DOI: https://doi.org/10.1016/j.ceramint.2016.04.097.

    Article  Google Scholar 

  115. JIANG Tai-zhi, WANG Zhen-hua, ZHANG **g, et al. Understanding the flash sintering of rare-earth-doped ceria for solid OxideFuel cell [J]. Journal of the American Ceramic Society, 2015, 98(6): 1717–1723. DOI: https://doi.org/10.1111/jace.13526.

    Article  Google Scholar 

  116. HAO **ao-ming, LIU Ya-jie, WANG Zhen-hua, et al. A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current [J]. Journal of Power Sources, 2012, 210: 86–91. DOI: https://doi.org/10.1016/j.jpowsour.2012.03.006.

    Article  Google Scholar 

  117. MUCCILLO E N S, CARVALHO S G M, MUCCILLO R. Electric field-assisted pressureless sintering of zirconia-scandia-ceria solid electrolytes [J]. Journal of Materials Science, 2018, 53(3): 1658–1671. DOI: https://doi.org/10.1007/s10853-017-1615-3.

    Article  Google Scholar 

  118. ZHANG Yuan-yao, LUO Jian. Promoting the flash sintering of ZnO in reduced atmospheres to achieve nearly full densities at furnace temperatures of <120 °C [J]. Scripta Materialia, 2015, 106: 26–29. DOI: https://doi.org/10.1016/j.scriptamat.2015.04.027.

    Article  Google Scholar 

  119. GAO Han-tian, ASEL T J, COX J W, et al. Native point defect formation in flash sintered ZnO studied by depth-resolved cathodoluminescence spectroscopy [J]. Journal of Applied Physics, 2016, 120(10): 105302. DOI: https://doi.org/10.1063/1.4962316.

    Article  Google Scholar 

  120. JIANG Tai-zhi, LIU Ya-jie, WANG Zhen-hua, et al. An improved direct current sintering technique for proton conductor-BaZr0.1Ce0.7Y0.1Yb0.1O3: The effect of direct current on sintering process [J]. Journal of Power Sources, 2014, 248: 70–76. DOI: https://doi.org/10.1016/j.jpowsour.2013.09.042.

    Article  Google Scholar 

  121. MUCCILLO R, MUCCILLO E N S, KLEITZ M. Densification and enhancement of the grain boundary conductivity of gadolinium-doped barium cerate by ultra fast flash grain welding [J]. Journal of the European Ceramic Society, 2012, 32(10): 2311–2316. DOI: https://doi.org/10.1016/j.jeurceramsoc.2012.01.032.

    Article  Google Scholar 

  122. SHI Pei-ran, QU Guo-xing, CAI Shi-kui, et al. An ultrafast synthesis method of LiNi1/3Co1/3Mn1/3O2 cathodes by flash/ field-assisted sintering [J]. Journal of the American Ceramic Society, 2018, 101(9): 4076–4083. DOI: https://doi.org/10.1111/jace.15582.

    Article  Google Scholar 

  123. PRETTE A L G, COLOGNA M, SGLAVO V, et al. Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications [J]. Journal of Power Sources, 2011, 196(4): 2061–2065. DOI: https://doi.org/10.1016/j.jpowsour.2010.10.036.

    Article  Google Scholar 

  124. GAUR A, SGLAVO V M. Flash-sintering of MnCo2O4 and its relation to phase stability [J]. Journal of the European Ceramic Society, 2014, 34(10): 2391–2400. DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.02.012.

    Article  Google Scholar 

  125. GAUR A, SGLAVO V M. Tuning the flash sintering characteristics of ceria with MnCo2O4 [J]. Materials Science and Engineering: B, 2018, 228: 160–166. DOI: https://doi.org/10.1016/j.mseb.2017.11.026.

    Article  Google Scholar 

  126. SORTINO E, LEBRUN J M, SANSONE A, et al. Continuous flash sintering [J]. Journal of the American Ceramic Society, 2018, 101(4): 1432–1440. DOI: https://doi.org/10.1111/jace.15314.

    Article  Google Scholar 

  127. CHEN D H, CHEN Y Y. Synthesis of strontium ferrite nanoparticles by coprecipitation in the presence of polyacrylic acid [J]. Materials Research Bulletin, 2002, 37(4): 801–810. DOI: https://doi.org/10.1016/s0025-5408(01)00590-6.

    Article  Google Scholar 

  128. IQBAL M J, ASHIQ M N, HERNANDEZ-GOMEZ P, et al. Magnetic, physical and electrical properties of Zr-Ni-substituted co-precipitated strontium hexaferrite nanoparticles [J]. Scripta Materialia, 2007, 57(12): 1093–1096. DOI: https://doi.org/10.1016/j.scriptamat.2007.08.017.

    Article  Google Scholar 

  129. ZI Z F, SUN Y P, ZHU X B, et al. Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method [J]. Journal of Magnetism and Magnetic Materials, 2008, 320(21): 2746–2751. DOI: https://doi.org/10.1016/j.jmmm.2008.06.009.

    Article  Google Scholar 

  130. LABARTA A, BATLLE X, IGLESIAS Ò. From finite size and surface effects to glassy behaviour in ferrimagnetic nanoparticles [M]// Surface Effects in Magnetic Nanoparticles. New York: Springer-Verlag, 2006: 105–140. DOI: https://doi.org/10.1007/0-387-26018-8_4.

    Google Scholar 

  131. HATAMIE S, PARSEH B, AHADIAN M M, et al. Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: in vitro cellular study [J]. Journal of Magnetism and Magnetic Materials, 2018, 462: 185–194. DOI: https://doi.org/10.1016/j.jmmm.2018.05.020.

    Article  Google Scholar 

  132. DI BARBA P. Multiobjective shape design in electricity and magnetism [M]. Dordrecht: Springer, 2010.

    Book  Google Scholar 

  133. COEY J M D. Hard magnetic materials: A perspective [J]. IEEE Transactions on Magnetics, 2011, 47(12): 4671–4681. DOI: https://doi.org/10.1109/TMAG.2011.2166975.

    Article  Google Scholar 

  134. GRANADOS-MIRALLES C, SAURA-MÚZQUIZ M, BØJESEN E D, et al. Unraveling structural and magnetic information during growth of nanocrystalline SrFe12O19 [J]. Journal of Materials Chemistry C, 2016, 4(46): 10903–10913. DOI: https://doi.org/10.1039/C6TC03803D.

    Article  Google Scholar 

  135. PULLAR R C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics [J]. Progress in Materials Science, 2012, 57(7): 1191–1334. DOI: https://doi.org/10.1016/j.pmatsci.2012.04.001.

    Article  Google Scholar 

  136. KNELLER E F, HAWIG R. The exchange-spring magnet: A new material principle for permanent magnets [J]. IEEE Transactions on Magnetics, 1991, 27(4): 3560–3588. DOI: https://doi.org/10.1109/20.102931.

    Article  Google Scholar 

  137. HADJIPANAYIS G C. Nanophase hard magnets [J]. Journal of Magnetism and Magnetic Materials, 1999, 200(1–3): 373–391. DOI: https://doi.org/10.1016/s0304-8853(99)00430-8.

    Article  Google Scholar 

  138. SKOMSKI R. Nanomagnetics [J]. Journal of Physics: Condensed Matter, 2003, 15(20): R841–R896. DOI: https://doi.org/10.1088/0953-8984/15/20/202.

    Google Scholar 

  139. LESLIE-PELECKY D L, RIEKE R D. Magnetic properties of nanostructured materials [J]. Chemistry of Materials, 1996, 8(8): 1770–1783. DOI: https://doi.org/10.1021/cm960077f.

    Article  Google Scholar 

  140. STINGACIU M, TOPOLE M, MCGUINESS P, et al. Magnetic properties of ball-milled SrFe12O19 particles consolidated by Spark-Plasma Sintering [J]. Scientific Reports, 2015, 5: 14112. DOI: https://doi.org/10.1038/srep14112.

    Article  Google Scholar 

  141. KETOV S V, YAGODKIN Y D, LEBED A L, et al. Structure and magnetic properties of nanocrystalline SrFe12O19 alloy produced by high-energy ball milling and annealing [J]. Journal of Magnetism and Magnetic Materials, 2006, 300(1): e479–e481. DOI: https://doi.org/10.1016/j.jmmm.2005.10.199.

    Article  Google Scholar 

  142. WU E, CAMPBELL S J, KACZMAREK W A. A Mössbauer effect study of ball-milled strontium ferrite [J]. Journal of Magnetism and Magnetic Materials, 1998, 177–181: 255–256. DOI: https://doi.org/10.1016/s0304-8853(97)00910-4.

    Article  Google Scholar 

  143. KACZMAREK W A, IDZIKOWSKI B, MÜLLER K H. XRD and VSM study of ball-milled SrFe12O19 powder [J]. Journal of Magnetism and Magnetic Materials, 1998, 177–181: 921–922. DOI: https://doi.org/10.1016/s0304-8853(97)00839-1.

    Article  Google Scholar 

  144. PALOMINO R L, BOLARÍN MIRÓ A M, TENORIO F N, et al. Sonochemical assisted synthesis of SrFe12O19 nanoparticles [J]. Ultrasonics Sonochemistry, 2016, 29: 470–475. DOI: https://doi.org/10.1016/j.ultsonch.2015.10.023.

    Article  Google Scholar 

  145. BOLARÍN-MIRÓ A M, SÁNCHEZ-DE JESÚS F, CORTES-ESCOBEDO C A, et al. Synthesis of M-type Srfe12O19 by mechanosynthesis assisted by spark plasma sintering[J]. Journal of Alloys and Compounds, 2015, 643: S226–S230. DOI: https://doi.org/10.1016/j.jallcom.2014.11.124

    Article  Google Scholar 

  146. KOSTISHYN V G, PANINA L V, KOZHITOV L V, et al. Synthesis and multiferroic properties of M-type SrFe12O19 hexaferrite ceramics [J]. Journal of Alloys and Compounds, 2015, 645: 297–300. DOI: https://doi.org/10.1016/j.jallcom.2015.05.024.

    Article  Google Scholar 

  147. KATLAKUNTA S, MEENA S S, SRINATH S, et al. Improved magnetic properties of Cr3+ doped SrFe12O19 synthesized via microwave hydrothermal route [J]. Materials Research Bulletin, 2015, 63: 58–66. DOI: https://doi.org/10.1016/j.materresbull.2014.11.043.

    Article  Google Scholar 

  148. JENUŠ P, TOPOLE M, MCGUINESS P, et al. Ferrite-based exchange-coupled hard-soft magnets fabricated by spark plasma sintering [J]. Journal of the American Ceramic Society, 2016, 99(6): 1927–1934. DOI: https://doi.org/10.1111/jace.14193.

    Article  Google Scholar 

  149. SAURA-MÚZQUIZ M, GRANADOS-MIRALLES C, STINGACIU M, et al. Improved performance of SrFe12O19 bulk magnets through bottom-up nanostructuring [J]. Nanoscale, 2016, 8(5): 2857–2866. DOI: https://doi.org/10.1039/C5NR07854G.

    Article  Google Scholar 

  150. GRINDI B, BEJI Z, VIAU G, et al. Microwave-assisted synthesis and magnetic properties of M-SrFe12O19 nanoparticles [J]. Journal of Magnetism and Magnetic Materials, 2018, 449: 119–126. DOI: https://doi.org/10.1016/j.jmmm.2017.10.002.

    Article  Google Scholar 

  151. GJØRUP F H, SAURA-MÚZQUIZ M, AHLBURG J V, et al. Coercivity enhancement of strontium hexaferrite nanocrystallites through morphology controlled annealing [J]. Materialia, 2018, 4: 203–210. DOI: https://doi.org/10.1016/j.mtla.2018.09.017.

    Article  Google Scholar 

  152. LISJAK D, MERTELJ A. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications [J]. Progress in Materials Science, 2018, 95: 286–328. DOI: https://doi.org/10.1016/j.pmatsci.2018.03.003.

    Article  Google Scholar 

  153. TERRIS B D, THOMSON T. Nanofabricated and self-assembled magnetic structures as data storage media [J]. Journal of Physics D: Applied Physics, 2005, 38(12): R199–R222. DOI: https://doi.org/10.1088/0022-3727/38/12/r01.

    Article  Google Scholar 

  154. MATSUI I. Preparation of FePt magnetic nanoparticle film by plasma chemical vapor deposition for ultrahigh density data storage media [J]. Japanese Journal of Applied Physics, 2006, 45(10B): 8302. DOI: https://doi.org/10.1143/JJAP.45.8302.

    Article  Google Scholar 

  155. ETHIRAJAN A, WIEDWALD U, BOYEN H G, et al. A micellar approach to magnetic ultrahigh-density data-storage media: Extending the limits of current colloidal methods [J]. Advanced Materials, 2007, 19(3): 406–410. DOI: https://doi.org/10.1002/adma.200601759.

    Article  Google Scholar 

  156. WANG Jian-**. FePt magnetic nanoparticles and their assembly for future magnetic media [J]. Proceedings of the IEEE, 2008, 96(11): 1847–1863. DOI: https://doi.org/10.1109/JPROC.2008.2004318.

    Article  Google Scholar 

  157. MCMICHAEL R D, SHULL R D, SWARTZENDRUBER L J, et al. Magnetocaloric effect in superparamagnets [J]. Journal of Magnetism and Magnetic Materials, 1992, 111(1–2): 29–33. DOI: https://doi.org/10.1016/0304-8853(92)91049-y.

    Article  Google Scholar 

  158. ARRUEBO M, FERNÁNDEZ-PACHECO R, IBARRA M R, et al. Magnetic nanoparticles for drug delivery [J]. Nano Today, 2007, 2(3): 22–32. DOI: https://doi.org/10.1016/s1748-0132(07)70084-1.

    Article  Google Scholar 

  159. JORDAN A, SCHOLZ R, WUST P, et al. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles [J]. Journal of Magnetism and Magnetic Materials, 1999, 201(1–3): 413–419. DOI: https://doi.org/10.1016/s0304-8853(99)00088-8.

    Article  Google Scholar 

  160. GU F X, KARNIK R, WANG A Z, et al. Targeted nanoparticles for cancer therapy [J]. Nano Today, 2007, 2(3): 14–21. DOI: https://doi.org/10.1016/s1748-0132(07)70083-x.

    Article  Google Scholar 

  161. KIM D H, KIM K N, KIM K M, et al. Necrosis of carcinoma cells using Co/sub1−x/Ni/subx/Fe/sub2/O/sub4/and Ba/sub1−x/Sr/subx/Fe/sub12/O/sub19/ferrites under alternating magnetic field [J]. IEEE Transactions on Magnetics, 2004, 40(4): 2985–2987. DOI: https://doi.org/10.1109/TMAG.2004.829181.

    Article  Google Scholar 

  162. LACONTE L, NITIN N, BAO Gang. Magnetic nanoparticle probes [J]. Materials Today, 2005, 8(5): 32–38. DOI: https://doi.org/10.1016/s1369-7021(05)00893-x.

    Article  Google Scholar 

  163. RONDINONE A J, SAMIA A C S, ZHANG Z J. Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites [J]. The Journal of Physical Chemistry B, 1999, 103(33): 6876–6880. DOI: https://doi.org/10.1021/jp9912307.

    Article  Google Scholar 

  164. DJUHANA D, OKTRI D C C, KIM D H. Micromagnetic simulation on ground state domain structures of Barium hexaferrite (BaFe12O19) [J]. Advanced Materials Research, 2014, 896: 414–417. DOI: https://doi.org/10.4028/www.scientific.net/amr.896.414.

    Article  Google Scholar 

  165. MUXWORTHY A R, WILLIAMS W. Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: Implications for magnetosome crystals [J]. Journal of the Royal Society Interface, 2009, 6(41): 1207–1212. DOI: https://doi.org/10.1098/rsif.2008.0462.

    Article  Google Scholar 

  166. MUXWORTHY A R, WILLIAMS W. Critical single-domain grain sizes in elongated iron particles: Implications for meteoritic and lunar magnetism [J]. Geophysical Journal International, 2015, 202(1): 578–583. DOI: https://doi.org/10.1093/gji/ggv180.

    Article  Google Scholar 

  167. DE SANTIAGO J, BERNHOFF H, EKERGÅRD B, et al. Electrical motor drivelines in commercial all-electric vehicles: A review [J]. IEEE Transactions on Vehicular Technology, 2012, 61(2): 475–484. DOI: https://doi.org/10.1109/TVT.2011.2177873.

    Article  Google Scholar 

  168. BURRESS T, CAMPBELL S, COOMER C, et al. Evaluation of the 2010 Toyota prius hybrid synergy drive system [R]. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). 2011.

    Book  Google Scholar 

  169. STAUNTON R H, BURRESS T A, MARLINO L D. Evaluation of 2005 honda accord hybrid electric drive system [R]: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 2006.

    Google Scholar 

  170. SATO Y, ISHIKAWA S, OKUBO T, et al. Development of high response motor and inverter system for the nissan LEAF electric vehicle [R]. SAE Technical Paper, 2011. DOI: https://doi.org/10.4271/2011-01-0350.

  171. KIMIABEIGI M, WIDMER J D, LONG R, et al. Highperformance low-cost electric motor for electric vehicles using ferrite magnets [J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 113–122. DOI: https://doi.org/10.1109/TIE.2015.2472517.

    Article  Google Scholar 

  172. ENERGY U S D O. Critical materials strategy [C], 2011.

  173. DORRELL D, PARSA L, BOLDEA I. Automotive electric motors, generators, and actuator drive systems with reduced or No permanent magnets and innovative design concepts [J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5693–5695. DOI: https://doi.org/10.1109/TIE.2014.2307839.

    Article  Google Scholar 

  174. COULTATE J. Wind turbine gearbox durability [J]. Wind Systems Magazine, 2009: 42–45.

  175. DOE U S. Trilateral Eu-Japan-Us conference on critical materials for a clean energy future [C]// Summary Report, US Department of Energy, Washington, https://energy.2011.

  176. JENSEN B B, MIJATOVIC N, ABRAHAMSEN A B. Development of superconducting wind turbine generators [J]. Journal of Renewable and Sustainable Energy, 2013, 5(2): 23137. DOI: https://doi.org/10.1063/1.4801449.

    Article  Google Scholar 

  177. FASTENAU R H J, VAN LOENEN E J. Applications of rare earth permanent magnets [J]. Journal of Magnetism and Magnetic Materials, 1996, 157–158: 0304885395012796. DOI: https://doi.org/10.1016/0304-8853(95)01279-6.

    Google Scholar 

  178. TANIUCHI Y, SHIBATANI K. Highly efficient industrial 11 kW permanent magnet synchronous motor without rare-earth metals [C]// Proc. 8th Int. Conf. Energy Efficiency Motor DFriven Syst., 2013: 117–128.

  179. ROMERAL L, URRESTY J C, RIBA RUIZ J R, et al. Modeling of surface-mounted permanent magnet synchronous motors with stator winding interturn faults [J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1576–1585. DOI: https://doi.org/10.1109/TIE.2010.2062480.

    Article  Google Scholar 

  180. SAAVEDRA H, URRESTY J C, RIBA J R, et al. Detection of interturn faults in PMSMs with different winding configurations [J]. Energy Conversion and Management, 2014, 79: 534–542. DOI: https://doi.org/10.1016/j.enconman.2013.12.059.

    Article  Google Scholar 

  181. URRESTY J C, RIBA J R, ROMERAL L. A back-emf based method to detect magnet failures in PMSMs [J]. IEEE Transactions on Magnetics, 2013, 49(1): 591–598. DOI: https://doi.org/10.1109/TMAG.2012.2207731.

    Article  Google Scholar 

  182. LACAL-ARÁNTEGUI R. Materials use in electricity generators in wind turbines-state-of-the-art and future specifications [J]. Journal of Cleaner Production, 2015, 87: 275–283. DOI: https://doi.org/10.1016/j.jclepro.2014.09.047.

    Article  Google Scholar 

  183. NORMILE D. High technology. Haunted by ‘specter of unavailability, ‘experts huddle over critical materials [C]// American Association for the Advancement of Science, 2010.

  184. ORLIK T, YAP C W. China’s rare earth recoil[J]. Wall Street Journal, 2012, 14. DOI

  185. MOSS R L, TZIMAS E, KARA H, et al. Critical metals in strategic energy technologies [J]. Publications Office of the European Union, Luxembourg, 2011. DOI: https://doi.org/10.2790/35600

    Google Scholar 

  186. FROMER N A, EGGERT R G, LIFTON J. Critical materials for sustainable energy applications [J]. 2011.

  187. KRAMER M J, MCCALLUM R W, ANDERSON I A, et al. Prospects for non-rare earth permanent magnets for traction motors and generators [J]. JOM, 2012, 64(7): 752–763. DOI: https://doi.org/10.1007/s11837-012-0351-z.

    Article  Google Scholar 

  188. DONG Sheng-zhi, LI Wei, CHEN Hong-sheng, et al. The status of Chinese permanent magnet industry and R&D activities [J]. AIP Advances, 2017, 7(5): 56237. DOI: https://doi.org/10.1063/1.4978699.

    Article  Google Scholar 

  189. WALMER M H, LIU J F, DENT P C. Current status of permanent magnet industry in the united states [C]// Proceedings of 20th International Workshop on “Rare earth Permanent Magnets and their Applications,” Sept, 2008: 8–10.

  190. GOLEV A, SCOTT M, ERSKINE P D, et al. Rare earths supply chains: Current status, constraints and opportunities [J]. Resources Policy, 2014, 41: 52–59. DOI: https://doi.org/10.1016/j.resourpol.2014.03.004.

    Article  Google Scholar 

  191. HOENDERDAAL S, TERCERO ESPINOZA L, MARSCHEIDER-WEIDEMANN F, et al. Can a dysprosium shortage threaten green energy technologies? [J]. Energy, 2013, 49: 344–355. DOI: https://doi.org/10.1016/j.energy.2012.10.043.

    Article  Google Scholar 

  192. ELSHKAKI A, GRAEDEL T E. Dysprosium, the balance problem, and wind power technology [J]. Applied Energy, 2014, 136: 548–559. DOI: https://doi.org/10.1016/j.apenergy.2014.09.064.

    Article  Google Scholar 

  193. SMITH STEGEN K. Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis [J]. Energy Policy, 2015, 79: 1–8. DOI: https://doi.org/10.1016/j.enpol.2014.12.015.

    Article  Google Scholar 

  194. DENT P. High performance magnet materials: Risky supply chain [J]. Advanced Materials & Processes, 2009, 167: 27–30.

    Google Scholar 

  195. BINNEMANS K, JONES P T, BLANPAIN B, et al. Recycling of rare earths: A critical review [J]. Journal of Cleaner Production, 2013, 51: 1–22. DOI: https://doi.org/10.1016/j.jclepro.2012.12.037.

    Article  Google Scholar 

  196. MACHACEK E, FOLD N. Alternative value chains for rare earths: The Anglo-deposit developers [J]. Resources Policy, 2014, 42: 53–64. DOI: https://doi.org/10.1016/j.resourpol.2014.09.003.

    Article  Google Scholar 

  197. LY V, WU X, SMILLIE L, et al. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets [J]. Journal of Alloys and Compounds, 2014, 615: S285–S290. DOI: https://doi.org/10.1016/j.jallcom.2014.01.120.

    Article  Google Scholar 

  198. CHU S. Critical materials strategy [M]. DIANE publishing, 2011.

  199. MASSARI S, RUBERTI M. Rare earth elements as critical raw materials: Focus on international markets and future strategies [J]. Resources Policy, 2013, 38(1): 36–43. DOI: https://doi.org/10.1016/j.resourpol.2012.07.001.

    Article  Google Scholar 

  200. GOTO R, MATSUURA M, SUGIMOTO S, et al. Microstructure evaluation for Dy-free Nd-Fe-B sintered magnets with high coercivity [J]. Journal of Applied Physics, 2012, 111(7): 7A–739A. DOI: https://doi.org/10.1063/1.3680190.

    Article  Google Scholar 

  201. MORIMOTO S, OOI S, INOUE Y, et al. Experimental evaluation of a rare-earth-free PMASynRM with ferrite magnets for automotive applications [J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5749–5756. DOI: https://doi.org/10.1109/TIE.2013.2289856.

    Article  Google Scholar 

  202. PELLEGRINO G, VAGATI A, GUGLIELMI P, et al. Performance comparison between surface-mounted and interior PM motor drives for electric vehicle application [J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 803–811. DOI: https://doi.org/10.1109/TIE.2011.2151825.

    Article  Google Scholar 

  203. LASKARIS K I, KLADAS A G. Internal permanent magnet motor design for electric vehicle drive [J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 138–145. DOI: https://doi.org/10.1109/TIE.2009.2033086.

    Article  Google Scholar 

  204. JAHNS T M. Flux-weakening regime operation of an interior permanent magnet synchronous motor drive [C]// 1986 Annual Meeting Industry Applications Society. Denver, CO, USA. IEEE, 1986: 814–823.

    Google Scholar 

  205. WEEBER K R, SHAH M R, SIVASUBRAMANIAM K, et al. Advanced permanent magnet machines for a wide range of industrial applications [C]// IEEE PES General Meeting. Minneapolis, MN, USA. IEEE, 2010: 1–6. DOI: https://doi.org/10.1109/PES.2010.5590104.

    Google Scholar 

  206. KATTER M, ZAPF L, BLANK R, et al. Corrosion mechanism of RE-Fe-Co-Cu-Ga-Al-B magnets [J]. IEEE Transactions on Magnetics, 2001, 37(4): 2474–2476. DOI: https://doi.org/10.1109/20.951207.

    Article  Google Scholar 

  207. BALA H, TREPAK N M, SZYMURA S, et al. Corrosion protection of Nd-Fe-B type permanent magnets by zinc phosphate surface conversion coatings [J]. Intermetallics, 2001, 9(6): 515–519. DOI: https://doi.org/10.1016/s0966-9795(01)00035-8.

    Article  Google Scholar 

  208. MCCALLUM R W, LEWIS L, SKOMSKI R, et al. Practical aspects of modern and future permanent magnets [J]. Annual Review of Materials Research, 2014, 44: 451–477. DOI: https://doi.org/10.1146/annurev-matsci-070813-113457.

    Article  Google Scholar 

  209. SHLIMAS D I, KOZLOVSKIY A L, ZDOROVETS M V. Study of the formation effect of the cubic phase of LiTiO2 on the structural, optical, and mechanical properties of Li2± xTi1±xO3 ceramics with different contents of the X component [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(6): 7410–7422. DOI: https://doi.org/10.1007/s10854-021-05454-z.

    Google Scholar 

  210. TRUKHANOV S V. Investigation of stability of ordered manganites [J]. Journal of Experimental and Theoretical Physics, 2005, 101(3): 513–520. DOI: https://doi.org/10.1134/1.2103220.

    Article  Google Scholar 

  211. COEY J M D. Permanent magnets: Plugging the gap [J]. Scripta Materialia, 2012, 67(6): 524–529. DOI: https://doi.org/10.1016/j.scriptamat.2012.04.036.

    Article  Google Scholar 

  212. LEWIS L H, JIMÉNEZ-VILLACORTA F. Perspectives on permanent magnetic materials for energy conversion and power generation [J]. Metallurgical and Materials Transactions A, 2013, 44(1): 2–20. DOI: https://doi.org/10.1007/s11661-012-1278-2.

    Article  Google Scholar 

  213. RIBA J R, LÓPEZ-TORRES C, ROMERAL L, et al. Rare-earth-free propulsion motors for electric vehicles: A technology review [J]. Renewable and Sustainable Energy Reviews, 2016, 57: 367–379. DOI: https://doi.org/10.1016/j.rser.2015.12.121.

    Article  Google Scholar 

  214. MANCHANDA P, KUMAR P, KASHYAP A, et al. Intrinsic properties of Fe-substituted $L10 $ magnets [J]. IEEE Transactions on Magnetics, 2013, 49(10): 5194–5198. DOI: https://doi.org/10.1109/TMAG.2013.2261821.

    Article  Google Scholar 

  215. ZHAO X, NGUYEN M C, ZHANG W Y, et al. Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm [J]. Physical Review Letters, 2014, 112(4): 045502. DOI: https://doi.org/10.1103/PhysRevLett.112.045502.

    Article  Google Scholar 

  216. CUONG NGUYEN M, ZHAO **n, JI Min, et al. Atomic structure and magnetic properties of Fe1–i>xCox alloys [J]. Journal of Applied Physics, 2012, 111(IS-J 7698). DOI: https://doi.org/10.1063/1.3677929.

  217. HAFNER J, WOLVERTON C, CEDER G. Toward computational materials design: The impact of density functional theory on materials research [J]. MRS Bulletin, 2006, 31(9): 659–668. DOI: https://doi.org/10.1557/mrs2006.174.

    Article  Google Scholar 

  218. SKOMSKI R, KASHYAP A, ENDERS A. Is the magnetic anisotropy proportional to the orbital moment? [J]. Journal of Applied Physics, 2011, 109(7): 07E143. DOI: https://doi.org/10.1063/1.3562445.

    Article  Google Scholar 

  219. BELASHCHENKO K D, ANTROPOV V P, ZEIN N E. Self-consistent local GW method: Application to 3d and 4d metals [J]. Physical Review B, 2006, 73(7): 073105. DOI: https://doi.org/10.1103/physrevb.73.073105.

    Article  Google Scholar 

  220. ANTROPOV V P, VAN SCHILFGAARDE M, BRINK S, et al. On the calculation of exchange interactions in metals [J]. Journal of Applied Physics, 2006, 99(8): 7A–739A. DOI: https://doi.org/10.1063/1.2176392.

    Article  Google Scholar 

  221. WDOWIAK A, MAZUREK P A, WDOWIAK A, et al. Effect of electromagnetic waves on human reproduction [J]. Annals of Agricultural and Environmental Medicine: AAEM, 2017, 24(1): 13–18. DOI: https://doi.org/10.5604/12321966.1228394.

    Article  Google Scholar 

  222. BETZALEL N, BEN ISHAI P, FELDMAN Y. The human skin as a sub-THz receiver-Does 5G pose a danger to it or not? [J]. Environmental Research, 2018, 163: 208–216. DOI: https://doi.org/10.1016/j.envres.2018.01.032.

    Article  Google Scholar 

  223. BETZALEL N, FELDMAN Y, BEN ISHAI P. Response to the Comment of FosterEt Al. Titled “Comments On BetzalelEt Al. “the Human Skin as a Sub-Thz Receiver-Does 5G Pose a Danger to It Or Not?” [Environ. Res. 163 (2018): 208–216]” [J]. Environmental Research, 2020, 182: 109016. DOI: https://doi.org/10.1016/j.envres.2019.109016

    Article  Google Scholar 

  224. FU Min, JIAO Qing-ze, ZHAO Yun. In situ fabrication and characterization of cobalt ferrite nanorods/graphene composites [J]. Materials Characterization, 2013, 86: 303–315. DOI: https://doi.org/10.1016/j.matchar.2013.10.019.

    Article  Google Scholar 

  225. CHEN Wei, LIU Qing-yun, ZHU **-xi, et al. One-step in situ growth of magnesium ferrite nanorods on graphene and their microwave-absorbing properties [J]. Applied Organometallic Chemistry, 2018, 32(2): e4017. DOI: https://doi.org/10.1002/aoc.4017.

    Article  Google Scholar 

  226. SINGH J, SINGH C, KAUR D, et al. Optimization of performance parameters of doped ferrite-based microwave absorbers: Their structural, tunable reflection loss, bandwidth, and input impedance characteristics [J]. IEEE Transactions on Magnetics, 2021, 57(7): 2800619. DOI: https://doi.org/10.1109/TMAG.2021.3063175.

    Article  Google Scholar 

  227. QING Yu-chang, NAN Han-yi, LUO Fa, et al. Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers [J]. RSC Advances, 2017, 7(44): 27755–27761. DOI: https://doi.org/10.1039/C7RA02417G.

    Article  Google Scholar 

  228. DONG Chang-shun, WANG **n, ZHOU Pei-heng, et al. Microwave magnetic and absorption properties of M-type ferrite BaCoxTixFe12–2xO19 in the Ka band [J]. Journal of Magnetism and Magnetic Materials, 2014, 354: 340–344. DOI: https://doi.org/10.1016/j.jmmm.2013.11.008.

    Article  Google Scholar 

  229. LIU Yue, WANG ting **, LIU Ying, et al. Mechanism for synthesizing Barium hexagonal ferrite by sol-gel method [J]. Advanced Materials Research, 2012, 549: 105–108. DOI: https://doi.org/10.4028/www.scientific.net/amr.549.105.

    Article  Google Scholar 

  230. AYDOGAN E, KAYA S, DERICIOGLU A F. Morphology and magnetic properties of Barium hexaferrite ceramics synthesized in xwt% NaCl-(100 −x) wt% KCL molten salts [J]. Ceramics International, 2014, 40(1): 2331–2336. DOI: https://doi.org/10.1016/j.ceramint.2013.08.002.

    Article  Google Scholar 

  231. ALMESSIERE M A, SLIMANI Y, GUNER S, et al. Ultrasonic synthesis, magnetic and optical characterization of Tm3+ and Tb3+ ions Co-doped Barium nanohexaferrites [J]. Journal of Solid State Chemistry, 2020, 286: 121310. DOI: https://doi.org/10.1016/j.jssc.2020.121310.

    Article  Google Scholar 

  232. NARANG S B, PUBBY K, SINGH C. Thickness and composition tailoring of K- and ka-band microwave absorption of BaCoxTixFe(12−2x)O19 ferrites [J]. Journal of Electronic Materials, 2017, 46(2): 718–728. DOI: https://doi.org/10.1007/s11664-016-5059-3.

    Article  Google Scholar 

  233. XIA Ai-lin, ZUO Cong-hua, CHEN Lu, et al. Hexagonal SrFe12O19 ferrites: Hydrothermal synthesis and their sintering properties [J]. Journal of Magnetism and Magnetic Materials, 2013, 332: 186–191. DOI: https://doi.org/10.1016/j.jmmm.2012.12.035.

    Article  Google Scholar 

  234. TURCHENKO V A, TRUKHANOV S V, KOSTISHIN V G, et al. Impact of In3+ cations on structure and electromagnetic state of M-type hexaferrites [J]. Journal of Energy Chemistry, 2022, 31(6): 667–676, I0018.

    Article  Google Scholar 

  235. ZHIVULIN V E, TROFIMOV E A, ZAITSEVA O V, et al. Preparation, phase stability, and magnetization behavior of high entropy hexaferrites [J]. iScience, 2023, 26(7): 107077. DOI: https://doi.org/10.1016/j.isci.2023.107077.

    Article  Google Scholar 

  236. LIU Qing-yun, YANG Yan-ting, LI Hui, et al. NiO nanoparticles modified with 5, 10, 15, 20-tetrakis(4-carboxyl pheyl) -porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection [J]. Biosensors and Bioelectronics, 2015, 64: 147–153. DOI: https://doi.org/10.1016/j.bios.2014.08.062.

    Article  Google Scholar 

  237. ZHANG Le-you, CHEN Ming-xing, JIANG Yan-ling, et al. A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2 [J]. Sensors and Actuators B: Chemical, 2017, 239: 28–35. DOI: https://doi.org/10.1016/j.snb.2016.07.168.

    Article  Google Scholar 

  238. CHEN Wei, ZHU **-xi, LIU Qing-yun, et al. Preparation of urchin-like strontium ferrites as microwave absorbing materials [J]. Materials Letters, 2017, 209: 425–428. DOI: https://doi.org/10.1016/j.matlet.2017.08.075.

    Article  Google Scholar 

  239. KUMAR S, VERMA V, WALIA R. Magnetization and thickness dependent microwave attenuation behaviour of Ferrite-PANI composites and embedded composite-fabrics prepared by in situ polymerization [J]. AIP Advances, 2021, 11(1): 15106. DOI: https://doi.org/10.1063/9.0000022.

    Article  Google Scholar 

  240. FU Min, JIAO Qing-ze, ZHAO Yun, et al. Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials [J]. Journal of Materials Chemistry A, 2014, 2(3): 735–744. DOI: https://doi.org/10.1039/C3TA14050D.

    Article  Google Scholar 

  241. FU Min, JIAO Qing-ze, ZHAO Yun. Preparation of NiFe2O4nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties [J]. Journal of Materials Chemistry A, 2013, 1(18): 5577–5586. DOI: https://doi.org/10.1039/C3TA10402H.

    Article  Google Scholar 

  242. LIU Y, LIU X, WANG X. Synthesis and microwave absorption properties of Ni-Zn-Mn spinel ferrites [J]. Advances in Applied Ceramics, 2015, 114(2): 82–86. DOI: https://doi.org/10.1179/1743676114y.0000000194.

    Article  Google Scholar 

  243. ARI ADI W, YUNASFI Y, MASHADI M, et al. Metamaterial: smart magnetic material for microwave absorbing material [M]// Electromagnetic Fields and Waves. 2019: 1–18: DOI: https://doi.org/10.5772/intechopen.84471.

  244. LIU Pei-jiang, YAO Zheng-jun, NG V M H, et al. Enhanced microwave absorption properties of double-layer absorbers based on spherical NiO and Co0.2Ni0.4Zn0.4Fe2O4 ferrite composites [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(2): 171–179. DOI: https://doi.org/10.1007/s40195-017-0612-5.

    Article  Google Scholar 

  245. INDRUSIAK T, PEREIRA I M, HEITMANN A P, et al. Epoxy/ferrite nanocomposites as microwave absorber materials: Effect of multilayered structure [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(16): 13118–13130. DOI: https://doi.org/10.1007/s10854-020-03863-0.

    Google Scholar 

  246. JANG W, MALLESH S, LEE S B, et al. Microwave absorption properties of core-shell structured FeCoNi@PMMA filled in composites [J]. Current Applied Physics, 2020, 20(4): 525–530. DOI: https://doi.org/10.1016/j.cap.2020.01.019.

    Article  Google Scholar 

  247. DRMOTA A, DROFENIK M, ŽNIDARŠIČ A. Synthesis and characterization of nano-crystalline strontium hexaferrite using the co-precipitation and microemulsion methods with nitrate precursors [J]. Ceramics International, 2012, 38(2): 973–979. DOI: https://doi.org/10.1016/j.ceramint.2011.08.018.

    Article  Google Scholar 

  248. SRIVASTAVA M, OJHA A K, CHAUBEY S, et al. Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method [J]. Materials Science and Engineering: B, 2010, 175(1): 14–21. DOI: https://doi.org/10.1016/j.mseb.2010.06.005.

    Article  Google Scholar 

  249. HUANG **ao-gu, ZHA NG **g, WANG Wei, et al. Effect of pH value on electromagnetic loss properties of Co-Zn ferrite prepared via coprecipitation method [J]. Journal of Magnetism and Magnetic Materials, 2016, 405: 36–41. DOI: https://doi.org/10.1016/j.jmmm.2015.12.051.

    Article  Google Scholar 

  250. TYAGI S, BASKEY H B, AGARWALA R C, et al. Development of hard/soft ferrite nanocomposite for enhanced microwave absorption [J]. Ceramics International, 2011, 37(7): 2631–2641. DOI: https://doi.org/10.1016/j.ceramint.2011.04.012.

    Article  Google Scholar 

  251. HESSIEN M M, RASHAD M M, EL-BARAWY K. Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method [J]. Journal of Magnetism and Magnetic Materials, 2008, 320(3–4): 336–343. DOI: https://doi.org/10.1016/j.jmmm.2007.06.009.

    Article  Google Scholar 

  252. MOZAFFARI M, EGHBALI ARANI M, AMIGHIAN J. The effect of cation distribution on magnetization of ZnFe2O4 nanoparticles [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(21): 3240–3244. DOI: https://doi.org/10.1016/j.jmmm.2010.05.053.

    Article  Google Scholar 

  253. VICKERS N J. Animal communication: When I’m calling you, will you answer too? [J]. Current Biology: CB, 2017, 27(14): R713–R715. DOI: https://doi.org/10.1016/j.cub.2017.05.064.

    Article  Google Scholar 

  254. PAL A, HE Yi-liang, JEKEL M, et al. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle [J]. Environment International, 2014, 71: 46–62. DOI: https://doi.org/10.1016/j.envint.2014.05.025.

    Article  Google Scholar 

  255. SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades [J]. Nature, 2008, 452: 301–310. DOI: https://doi.org/10.1038/nature06599.

    Article  Google Scholar 

  256. URIBE I O, MOSQUERA-CORRAL A, RODICIO J L, et al. Advanced technologies for water treatment and reuse [J]. AIChE Journal, 2015, 61(10): 3146–3158. DOI: https://doi.org/10.1002/aic.15013.

    Article  Google Scholar 

  257. KOZLOVSKIY A, EGIZBEK K, ZDOROVETS M V, et al. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5 [J]. Sensors, 2020, 20(17): 4851. DOI: https://doi.org/10.3390/s20174851.

    Article  Google Scholar 

  258. TRUKHANOV S V. Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3−y (0≤γ≤0.25) [J]. Journal of Experimental and Theoretical Physics, 2005, 100(1): 95–105. DOI: https://doi.org/10.1134/1.1866202.

    Article  MathSciNet  Google Scholar 

  259. TRUKHANOV S V, TROYANCHUK I O, PUSHKAREV N V, et al. Magnetic properties of anion-deficient La1−xBaxMnO3−x/2 (0≤x≤0.30) manganites [J]. Journal of Experimental and Theoretical Physics, 2003, 96(1): 110–117. DOI: https://doi.org/10.1134/1.1545390.

    Article  Google Scholar 

  260. TRUKHANOV S V, BUSHINSKY M V, TROYANCHUK I O, et al. Magnetic ordering in La1−x SrxMnO3−x/2 anion-deficient manganites [J]. Journal of Experimental and Theoretical Physics, 2004, 99(4): 756–765. DOI: https://doi.org/10.1134/1.1826167.

    Article  Google Scholar 

  261. SAIZ J, BRINGAS E, ORTIZ I. New functionalized magnetic materials for As5+ removal: Adsorbent regeneration and reuse [J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 18928–18934. DOI: https://doi.org/10.1021/ie500912k.

    Article  Google Scholar 

  262. SAIZ J, BRINGAS E, ORTIZ I. Functionalized magnetic nanoparticles as new adsorption materials for arsenic removal from polluted waters [J]. Journal of Chemical Technology & Biotechnology, 2014, 89(6): 909–918. DOI: https://doi.org/10.1002/jctb.4331.

    Article  Google Scholar 

  263. SAN ROMÁN M F, BRINGAS E, IBAÑEZ R, et al. Liquid membrane technology: Fundamentals and review of its applications [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(1): 2–10. DOI: https://doi.org/10.1002/jctb.2252.

    Article  Google Scholar 

  264. JADHAV S V, BRINGAS E, YADAV G D, et al. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal [J]. Journal of Environmental Management, 2015, 162: 306–325. DOI: https://doi.org/10.1016/j.jenvman.2015.07.020.

    Article  Google Scholar 

  265. DOMINGUEZ S, RIBAO P, RIVERO M J, et al. Influence of radiation and TiO2 concentration on the hydroxyl radicals generation in a photocatalytic LED reactor. Application to dodecylbenzenesulfonate degradation [J]. Applied Catalysis B: Environmental, 2015, 178: 165–169. DOI: https://doi.org/10.1016/j.apcatb.2014.09.072.

    Article  Google Scholar 

  266. LEE S Y, PARK S J. TiO2 photocatalyst for water treatment applications [J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1761–1769. DOI: https://doi.org/10.1016/j.jiec.2013.07.012.

    Article  Google Scholar 

  267. XU Piao, ZENG guang ming, HUANG dan lian, et al. Use of iron oxide nanomaterials in wastewater treatment: A review [J]. Science of the Total Environment, 2012, 424: 1–10. DOI: https://doi.org/10.1016/j.scitotenv.2012.02.023.

    Article  Google Scholar 

  268. ZHOU Qing-xiang, FANG Zhi, LI **g, et al. Applications of TiO2 nanotube arrays in environmental and energy fields: A review [J]. Microporous and Mesoporous Materials, 2015, 202: 22–35. DOI: https://doi.org/10.1016/j.micromeso.2014.09.040.

    Article  Google Scholar 

  269. BUZEA C, PACHECO I I, ROBBIE K. Nanomaterials and nanoparticles: Sources and toxicity [J]. Biointerphases, 2007, 2(4): MR17–MR71. DOI: https://doi.org/10.1116/1.2815690.

    Article  Google Scholar 

  270. UDOM I, RAM M K, STEFANAKOS E K, et al. One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications [J]. Materials Science in Semiconductor Processing, 2013, 16(6): 2070–2083. DOI: https://doi.org/10.1016/j.mssp.2013.06.017.

    Article  Google Scholar 

  271. LINLEY S, LESHUK T, GU F X. Magnetically separable water treatment technologies and their role in future advanced water treatment: A patent review [J]. CLEAN-Soil, Air, Water, 2013, 41(12): 1152–1156. DOI: https://doi.org/10.1002/clen.201100261.

    Article  Google Scholar 

  272. WANG Rong, LI Jun-yi, ZHOU Hai-gang, et al. Research advancement on magnetic nanomaterial demulsifier for oil-water separation [J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110245. DOI: https://doi.org/10.1016/j.jece.2023.110245.

    Article  Google Scholar 

  273. LIN Dao-hui, TIAN **ao-li, WU Feng-chang, et al. Fate and transport of engineered nanomaterials in the environment [J]. Journal of Environmental Quality, 2010, 39(6): 1896–1908. DOI: https://doi.org/10.2134/jeq2009.0423.

    Article  Google Scholar 

  274. HORIE M, KATO H, IWAHASHI H. Cellular effects of manufactured nanoparticles: Effect of adsorption ability of nanoparticles [J]. Archives of Toxicology, 2013, 87(5): 771–781. DOI: https://doi.org/10.1007/s00204-013-1033-5.

    Article  Google Scholar 

  275. CHEN Chun-ying, LI Yu-feng, QU Ying, et al. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology [J]. Chemical Society Reviews, 2013, 42(21): 8266–8303. DOI: https://doi.org/10.1039/C3CS60111K.

    Article  Google Scholar 

  276. GNACH A, LIPINSKI T, BEDNARKIEWICZ A, et al. Upconverting nanoparticles: Assessing the toxicity [J]. Chemical Society Reviews, 2015, 44(6): 1561–1584. DOI: https://doi.org/10.1039/c4cs00177j.

    Article  Google Scholar 

  277. REDDY L H, ARIAS J L, NICOLAS J, et al. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications [J]. Chemical Reviews, 2012, 112(11): 5818–5878. DOI: https://doi.org/10.1021/cr300068p.

    Article  Google Scholar 

  278. KRUG H F. Nanosafety research: Are we on the right track? [J]. Angewandte Chemie (International Ed in English), 2014, 53(46): 12304–12319. DOI: https://doi.org/10.1002/anie.201403367.

    Article  Google Scholar 

  279. WARHEIT D B, DONNER E M. How meaningful are risk determinations in the absence of a complete dataset? Making the case for publishing standardized test guideline and ‘no effect’ studies for evaluating the safety of nanoparticulates versus spurious ‘high effect’ results from single investigative studies [J]. Science and Technology of Advanced Materials, 2015, 16(3): 034603. DOI: https://doi.org/10.1088/1468-6996/16/3/034603.

    Article  Google Scholar 

  280. FADEEL B, FORNARA A, TOPRAK M S, et al. Kee** it real: The importance of material characterization in nanotoxicology [J]. Biochemical and Biophysical Research Communications, 2015, 468(3): 498–503. DOI: https://doi.org/10.1016/j.bbrc.2015.06.178.

    Article  Google Scholar 

  281. LI Yu-feng, GAO Yu-xi, CHAI Zhi-fang, et al. Nanometallomics: An emerging field studying the biological effects of metal-related nanomaterials [J]. Metallomics, 2014, 6(2): 220–232. DOI: https://doi.org/10.1039/C3MT00316G.

    Article  Google Scholar 

  282. BENETTI F, BREGOLI L, OLIVATO I, et al. Effects of metal(loid) -based nanomaterials on essential element homeostasis: The central role of nanometallomics for nanotoxicology [J]. Metallomics, 2014, 6(4): 729–747. DOI: https://doi.org/10.1039/C3MT00167A.

    Article  Google Scholar 

  283. BIESUZ M, SGLAVO V M. Flash sintering of ceramics [J]. Journal of the European Ceramic Society, 2019, 39(2–3): 115–143. DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.08.048.

    Article  Google Scholar 

  284. HOUBI A, ALDASHEVICH Z A, ATASSI Y, et al. Microwave absorbing properties of ferrites and their composites: A review [J]. Journal of Magnetism and Magnetic Materials, 2021, 529: 167839. DOI: https://doi.org/10.1016/j.jmmm.2021.167839.

    Article  Google Scholar 

  285. GÓMEZ-PASTORA J, DOMINGUEZ S, BRINGAS E, et al. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment [J]. Chemical Engineering Journal, 2017, 310: 407–427. DOI: https://doi.org/10.1016/j.cej.2016.04.140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XU Bin provided the concept and edited the draft of manuscript. CHEN Yu-feng conducted the literature review and wrote the first draft of the manuscript. ZhOU Yu-juan edited the draft of manuscript. LUO Bi-yun, ZHONG Shou-guo and LIU **ng-ao for survey and form analysis.

Corresponding author

Correspondence to Yu-juan Zhou  (周玉娟).

Ethics declarations

XU Bin, CHEN Yu-feng, ZhOU Yu-juan, LUO Bi-yun, ZHONG Shou-guo and LIU **ng-ao declare that they have no conflict of interest.

Additional information

Foundation item Project(1053320222852)supported by the Graduate Student Innovation Program of Central South University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Chen, Yf., Zhou, Yj. et al. Research progress of permanent ferrite magnet materials. J. Cent. South Univ. (2024). https://doi.org/10.1007/s11771-024-5640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11771-024-5640-5

Key words

关键词

Navigation