Log in

Influence of pH on the leaching behaviour of heavy metal(loid)s in copper smelting flue dust and mineralogical control mechanism

pH对铜冶炼烟尘中重金属浸出行为的影响及其矿物学控制机理

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The release behavior of heavy metal(loid)s in Cu smelting flue dust, collected from a deserted Cu smelter, and its mineralogical control mechanism were studied using toxicity characteristic leaching procedure (TCLP) test and wide pH range (3–13) dependent leaching experiments. The concentrations of As, Cd, Cu, Pb and Zn in TCLP leachate were 704, 82.7, 2.08, 3.1 and 3.26 times threshold of corresponding elements listed in identification standards for hazardous wastes of China (GB 5085.3—2007), respectively. High release percentage of As ranged from 26.0% to 28.1% over the entire pH range. The leachability of Cd, Cu, and Zn was significantly high under acidic conditions, while that of Pb was highly released at pH 13.0. The geochemical analysis showed that As solubility was partly controlled by the new formation of Ca, Cu, Pb, and Zn arsenates under pH 5.5–11.5, and that of Cd, Cu, Pb, and Zn was mainly controlled by hydroxide precipitation under alkaline condition. BCR extraction and XRD analysis indicated that higher leachate Cd and Zn concentrations were consistent with their higher content of active forms in dust. The study provides scientific guidance for the treatment and disposal of the flue dust for heavy metal(loid)s pollution prevention.

摘要

以某废弃铜冶炼厂收集的铜冶炼烟尘作为样本,采用TCLP毒性浸出和宽溶液pH(3∼13)范围浸 出实验,研究了铜冶炼烟尘中重金属的释放行为及其矿物学控制机制。结果表明,TCLP浸出液中As、 Cd、Cu、Pb 和Zn 浓度分别是我国《危险废物鉴别标准浸出毒性鉴别》(GB 5085.3—2007)中相应元素 限值的704 倍、82.7 倍、2.08 倍、3.1 倍和3.26 倍。在整个溶液pH 处理范围内, As 的释放率高达 26.0%∼28.1%。在酸性条件下Cd、Cu和Zn的浸出率明显较高,而Pb在pH 13.0 时释放率较高。地球化 学分析表明,在pH 5.5∼11.5 的溶液处理下, As 的溶解度部分受新形成的Ca、Cu、Pb 和Zn 砷酸盐控 制,而Cd、Cu、Pb 和Zn 的溶解度主要受碱性条件下氢氧化物沉淀形成控制。BCR顺序提取和XRD 分析表明,浸出液中Cd和Zn 浓度较高与其在灰尘中赋存活性态比例高一致。研究结果为烟尘处理或 处置防止重金属污染提供科学指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. CUI Rong-guo, GUO Juan, XU Gui-fen, et al. Production, consumption rules and demand prediction of global copper [J]. Resources Science, 2015, 37(5): 944–950.

    Google Scholar 

  2. BOULAMANTI A, MOYA J A. Production costs of the non-ferrous metals in the EU and other countries: Copper and zinc [J]. Resources Policy, 2016, 49: 112–118. DOI: https://doi.org/10.1016/j.resourpol.2016.04.011.

    Article  Google Scholar 

  3. CHE Jian-yong, ZHANG Wen-juan, DEEN K M, et al. Eco-friendly treatment of copper smelting flue dust for recovering multiple heavy metals with economic and environmental benefits [J]. Journal of Hazardous Materials, 2024, 465: 133039. DOI: https://doi.org/10.1016/j.jhazmat.2023.133039.

    Article  Google Scholar 

  4. GOONAN T G. Flows of selected materials associated with world copper smelting [R]. U. S. Geological Survey Open-file Report 2004-1395, 2005.

  5. LIU Wei-feng, FU **n-xin, YANG Tian-zu, et al. Oxidation leaching of copper smelting dust by controlling potential [J]. Transactions of Nonferrous Metals Society of China, 2018, 28(9): 1854–1861. DOI: https://doi.org/10.1016/s1003-6326(18)64830-7.

    Article  Google Scholar 

  6. LI Qing-zhu, LI Ben-sheng, YAN Xue-lei, et al. A review of arsenic reaction behavior in copper smelting process and its disposal techniques [J]. Journal of Central South University, 2023, 30(8): 2510–2541. DOI: https://doi.org/10.1007/s11771-023-5392-7.

    Article  Google Scholar 

  7. YANG Kang, LIU Wei, ZHANG Tian-fu, et al. Water leaching of arsenic trioxide from metallurgical dust with emphasis on its kinetics [J]. Journal of Central South University, 2019, 26(9): 2328–2339. DOI: https://doi.org/10.1007/s11771-019-4177-5.

    Article  Google Scholar 

  8. GUO Xue-yi, YI Yu, SHI **g, et al. Leaching behavior of metals from high-arsenic dust by NaOH–Na2S alkaline leaching [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2): 575–580. DOI: https://doi.org/10.1016/s1003-6326(16)64118-3.

    Article  Google Scholar 

  9. de la CAMPA A M S, SÁNCHEZ-RODAS D, GONZÁLEZ CASTANEDO Y, et al. Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities: Influence on air quality [J]. Journal of Hazardous Materials, 2015, 291: 18–27. DOI: https://doi.org/10.1016/j.jhazmat.2015.02.058.

    Article  Google Scholar 

  10. DU **, XIE Yun-feng, WANG Shi-jie, et al. Potential sources of and ecological risks from heavy metals in agricultural soils, Daye City, China [J]. Environmental Science and Pollution Research, 2015, 22(5): 3498–3507. DOI: https://doi.org/10.1007/s11356-014-3532-1.

    Article  Google Scholar 

  11. CAI Li-mei, WANG Qiu-shuang, LUO Jie, et al. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China [J]. The Science of the Total Environment, 2019, 650(Pt 1): 725–733. DOI: https://doi.org/10.1016/j.scitotenv.2018.09.081.

    Article  Google Scholar 

  12. SUN Ying, YANG Qian, JIA Ze-qi, et al. Study on stabilization of lead in flue dust [J]. IOP Conference Series: Materials Science and Engineering, 2018, 423: 012139. DOI: https://doi.org/10.1088/1757-899x/423/1/012139.

    Article  Google Scholar 

  13. JAROŠÍKOVÁ A, ETTLER V, MIHALJEVIČ M, et al. Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust [J]. Journal of Environmental Management, 2018, 209: 71–80. DOI: https://doi.org/10.1016/j.jenvman.2017.12.044.

    Article  Google Scholar 

  14. FOSUA B A, XIE Hui-ming, XIAO **-yuan, et al. Release characteristics of heavy metals from electrolytic manganese residue under varying environmental factors [J]. Environmental Monitoring and Assessment, 2023, 195(4): 498. DOI: https://doi.org/10.1007/s10661-023-11131-x.

    Article  Google Scholar 

  15. QUINA M J, BORDADO J C M, QUINTA-FERREIRA R M. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues [J]. Waste Management, 2009, 29(9): 2483–2493. DOI: https://doi.org/10.1016/j.wasman.2009.05.012.

    Article  Google Scholar 

  16. VÍTKOVÁ M, ETTLER V, HYKS J, et al. Leaching of metals from copper smelter flue dust (Mufulira, Zambian Copperbelt) [J]. Applied Geochemistry, 2011, 26: S263–S266. DOI: https://doi.org/10.1016/j.apgeochem.2011.03.120.

    Article  Google Scholar 

  17. BALLADARES E, KELM U, HELLE S, et al. Chemical-mineralogical characterization of copper smelting flue dust [J]. DYNA, 2014, 81(186): 11. DOI: https://doi.org/10.15446/dyna.v81n186.32852.

    Article  Google Scholar 

  18. OKANIGBE D O, POPOOLA A P I, ADELEKE A A. Characterization of copper smelter dust for copper recovery [J]. Procedia Manufacturing, 2017, 7: 121–126. DOI: https://doi.org/10.1016/j.promfg.2016.12.032.

    Article  Google Scholar 

  19. CAPPUYNS V, ALIAN V, VASSILIEVA E, et al. pH dependent leaching behavior of Zn, Cd, Pb, Cu and As from mining wastes and slags: Kinetics and mineralogical control [J]. Waste and Biomass Valorization, 2014, 5(3): 355–368. DOI: https://doi.org/10.1007/s12649-013-9274-3.

    Article  Google Scholar 

  20. CHEN Yu-jie, ZHAO Zong-wen, TASKINEN P, et al. Characterization of copper smelting flue dusts from a bottom-blowing bath smelting furnace and a flash smelting furnace [J]. Metallurgical and Materials Transactions B, 2020, 51(6): 2596–2608. DOI: https://doi.org/10.1007/s11663-020-01907-8.

    Article  Google Scholar 

  21. KRÓL A, MIZERNA K, BOŻYM M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag [J]. Journal of Hazardous Materials, 2020, 384: 121502. DOI: https://doi.org/10.1016/j.jhazmat.2019.121502.

    Article  Google Scholar 

  22. RODGERS K J, HURSTHOUSE A, CUTHBERT S. The potential of sequential extraction in the characterisation and management of wastes from steel processing: A prospective review [J]. International Journal of Environmental Research and Public Health, 2015, 12(9): 11724–11755. DOI: https://doi.org/10.3390/ijerph120911724.

    Article  Google Scholar 

  23. HE Xu-wen, CHAI Zhen, SHI **g-**g, et al. Leaching of elements from flue dust produced in copper scrap smelting process [J]. Toxicological & Environmental Chemistry, 2013, 95(6): 932–941. DOI: https://doi.org/10.1080/02772248.2013.840979.

    Article  Google Scholar 

  24. DULSKI T R. A manual for the chemical analysis of metals [M]. West Conshohocken, PA: ASTM, 1996.

    Book  Google Scholar 

  25. HU Hong-yun, LIU Huan, CHEN Juan, et al. Speciation transformation of arsenic during municipal solid waste incineration [J]. Proceedings of the Combustion Institute, 2015, 35(3): 2883–2890. DOI: https://doi.org/10.1016/j.proci.2014.06.052.

    Article  Google Scholar 

  26. RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials [J]. Journal of Environmental Monitoring: JEM, 1999, 1(1): 57–61. DOI: https://doi.org/10.1039/a807854h.

    Article  Google Scholar 

  27. HAN **ao-qing, XIAO **-yuan, GUO Zhao-hui, et al. Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management [J]. Ecotoxicology and Environmental Safety, 2018, 159: 38–45. DOI: https://doi.org/10.1016/j.ecoenv.2018.04.049.

    Article  Google Scholar 

  28. PARKHURST D L, APPELO C A J. Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one dimensional transport, and inverse geochemical calculations [R]. U.S., 2013.

  29. YE Chuan-yong, ZHENG Mian-**. Study on existence forms of chemical compositions and saturation indexes of waters from Gasikule Salt Lake, Qinghai Province [J]. Science & Technology Review, 2016, 34(21): 101–111.

    Google Scholar 

  30. SHIH C J, LIN Cheng-fang. Arsenic contaminated site at an abandoned copper smelter plant: Waste characterization and solidification/stabilization treatment [J]. Chemosphere, 2003, 53(7): 691–703. DOI: https://doi.org/10.1016/s0045-6535(03)00519-8.

    Article  Google Scholar 

  31. GB 5085.3—2007. Identification standards for hazardous wastes identification for extraction toxicity[S]. (in Chinese)

  32. SAIKIA N, BORAH R R, KONWAR K, et al. pH dependent leachings of some trace metals and metalloid species from lead smelter slag and their fate in natural geochemical environment [J]. Groundwater for Sustainable Development, 2018, 7: 348–358. DOI: https://doi.org/10.1016/j.gsd.2018.01.009.

    Article  Google Scholar 

  33. ZHOU Hui-hui, LIU Gui-jian, ZHANG Li-qun, et al. Strategies for arsenic pollution control from copper pyrometallurgy based on the study of arsenic sources, emission pathways and speciation characterization in copper flash smelting systems [J]. Environmental Pollution, 2021, 270: 116203. DOI: https://doi.org/10.1016/j.envpol.2020.116203.

    Article  Google Scholar 

  34. LIU Qi, LIU Yong-qiang. Distribution of Pb(II) species in aqueous solutions [J]. Journal of Colloid and Interface Science, 2003, 268(1): 266–269. DOI: https://doi.org/10.1016/s0021-9797(03)00638-6.

    Article  Google Scholar 

  35. MAHANDRA H, WU Cheng-qian, GHAHREMAN A. Leaching characteristics and stability assessment of sequestered arsenic in flue dust based glass [J]. Chemosphere, 2021, 276: 130173. DOI: https://doi.org/10.1016/j.chemosphere.2021.130173.

    Article  Google Scholar 

  36. PARSONS M B, BIRD D K, EINAUDI M T, et al. Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California [J]. Applied Geochemistry, 2001, 16(14): 1567–1593. DOI: https://doi.org/10.1016/s0883-2927(01)00032-4.

    Article  Google Scholar 

  37. VANHEES P, JONES D, JENTSCHKE G, et al. Organic acid concentrations in soil solution: Effects of young coniferous trees and ectomycorrhizal fungi [J]. Soil Biology and Biochemistry, 2005, 37(4): 771–776. DOI: https://doi.org/10.1016/j.soilbio.2004.10.009.

    Article  Google Scholar 

  38. SAVEYN H, EDER P, GARBARINO E. et al. Study on methodological aspects regarding limit values for pollutants in aggregates in the context of the possible development of end-of-waste criteria under the EU waste framework directive [R]. European Commission, JRC Technical Reports, 2014.

  39. GB 25467-2010. Emission standard of pollutants for copper, nickel, cobalt industry [S]. (in Chinese)

  40. DONG Yong-bo, LIN Hai, LIU Quan-li, et al. Release law of As, Zn and Pb in tin tailings under simulated acid rain [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(10): 2921–2928. (in Chinese)

    Google Scholar 

  41. YOU Fang, ZHANG Li-**, YE Jun, et al. Microbial decomposition of biomass residues mitigated hydrogeochemical dynamics in strongly alkaline bauxite residues [J]. The Science of the Total Environment, 2019, 663: 216–226. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.317.

    Article  Google Scholar 

  42. WU Cheng-you, YU Hong-fa, ZHANG Hui-fang. Extraction of aluminum by pressure acid-leaching method from coal fly ash [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2282–2288. DOI: https://doi.org/10.1016/s1003-6326(11)61461-1.

    Article  Google Scholar 

  43. VÍTKOVÁ M, ETTLER V, ŠEBEK O, et al. The pH-dependent leaching of inorganic contaminants from secondary lead smelter fly ash [J]. Journal of Hazardous Materials, 2009, 167(1 – 3): 427–433. DOI: https://doi.org/10.1016/j.jhazmat.2008.12.136.

    Article  Google Scholar 

  44. ZHANG Hua, HE Pin-**g, SHAO Li-ming, et al. Leaching behavior of heavy metals from municipal solid waste incineration bottom ash and its geochemical modeling [J]. Journal of Material Cycles and Waste Management, 2008, 10(1): 7–13. DOI: https://doi.org/10.1007/s10163-007-0191-z.

    Article  Google Scholar 

  45. DIJKSTRA J J, van der SLOOT H A, COMANS R N J. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time [J]. Applied Geochemistry, 2006, 21(2): 335–351. DOI: https://doi.org/10.1016/j.apgeochem.2005.11.003.

    Article  Google Scholar 

  46. ZHANG Yan, JIANG Jian-guo, CHEN Mao-zhe. MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash [J]. Journal of Environmental Sciences, 2008, 20(11): 1398–1402. DOI: https://doi.org/10.1016/s1001-0742(08)62239-1.

    Article  Google Scholar 

  47. van HERCK P, van der BRUGGEN B, VOGELS G, et al. Application of computer modelling to predict the leaching behaviour of heavy metals from MSWI fly ash and comparison with a sequential extraction method [J]. Waste Management, 2000, 20(2–3): 203–210. DOI: https://doi.org/10.1016/s0956-053x(99)00321-9.

    Article  Google Scholar 

  48. YANG An-di, XIAO **-yuan, GUO Zhao-hui, et al. Static release characteristics of heavy metals from lead-zinc smelting slag leached by simulated acid rain [J]. China Environmental Science, 2021, 41(12): 5755–5763. DOI: https://doi.org/10.19674/j.cnki.issn1000-6923.20210508.004. (in Chinese)

    Google Scholar 

  49. JIN Zhi-sheng, LIU Tao-ze, YANG Yuan-gen, et al. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition [J]. Ecotoxicology and Environmental Safety, 2014, 104: 43–50. DOI: https://doi.org/10.1016/j.ecoenv.2014.02.003.

    Article  Google Scholar 

  50. KANG Min-ju, YU S, JEON S W, et al. Mobility of metal (loid)s in roof dusts and agricultural soils surrounding a Zn smelter: Focused on the impacts of smelter-derived fugitive dusts [J]. The Science of the Total Environment, 2021, 757: 143884. DOI: https://doi.org/10.1016/j.scitotenv.2020.143884.

    Article  Google Scholar 

  51. LI Jiang-shan, CHEN Zhen, WANG Qi-ming, et al. Change in re-use value of incinerated sewage sludge ash due to chemical extraction of phosphorus [J]. Waste Management, 2018, 74: 404–412. DOI: https://doi.org/10.1016/j.wasman.2018.01.007.

    Article  Google Scholar 

  52. HU Zhong-qiu, GUO Li, YAO Ying-ying, et al. Selective separation of arsenic and valuable metals in copper smelting dust by Na2S-NaOH leaching assisted with ball milling [J]. Chinese Journal of Environmental Engineering, 2018, 12 (11): 3243–3250. DOI: https://doi.org/10.12030/j.cjee.201806171. DOI: https://doi.org/10.12030/j.cjee.201806171.

    Google Scholar 

  53. YAO Li-wei, MIN **ao-bo, XU Hui, et al. Physicochemical and environmental properties of arsenic sulfide sludge from copper and lead-zinc smelter [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(7): 1943–1955. DOI: https://doi.org/10.1016/s1003-6326(20)65352-3.

    Article  Google Scholar 

  54. LI Zhang-tao, WANG Lu, WU Ji-zi, et al. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses [J]. Environmental Pollution, 2020, 260: 114098. DOI: https://doi.org/10.1016/j.envpol.2020.114098.

    Article  Google Scholar 

  55. LI Feng, ZHENG Yang, TIAN Jiang, et al. Cupriavidus sp. strain Cd02-mediated pH increase favoring bioprecipitation of Cd2+ in medium and reduction of cadmium bioavailability in paddy soil [J]. Ecotoxicology and Environmental Safety, 2019, 184: 109655. DOI: https://doi.org/10.1016/j.ecoenv.2019.109655.

    Article  Google Scholar 

  56. SHAO Da-dong, HU Jun, WANG **ang-ke. Plasma induced grafting multiwalled carbon nanotube with chitosan and its application for removal of UO, Cu2+, and Pb2+ from aqueous solutions [J]. Plasma Processes and Polymers, 2010, 7(12): 977–985. DOI: https://doi.org/10.1002/ppap.201000062.

    Article  Google Scholar 

  57. ZHANG Wen-juan, CHE Jian-yong, WEN Pei-cheng, et al. Co-treatment of copper smelting flue dust and arsenic sulfide residue by a pyrometallurgical approach for simultaneous removal and recovery of arsenic [J]. Journal of Hazardous Materials, 2021, 416: 126149. DOI: https://doi.org/10.1016/j.jhazmat.2021.126149.

    Article  Google Scholar 

  58. BERA S, PRINCE A A M, VELMURUGAN S, et al. Formation of zinc ferrite by solid-state reaction and its characterization by XRD and XPS [J]. Journal of Materials Science, 2001, 36(22): 5379–5384. DOI: https://doi.org/10.1023/A:1012488422484.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG **ao-yan: Methodology, writing-original draft & editing; XIAO **-yuan: Conceptualization, supervision, writing review & editing; GUO Zhao-hui, PENG Chi, RICHMOND Anaman: Review and editing; XUE Sheng-guo: Funding acquisition, BRIDGET Ataa: Review and editing.

Corresponding author

Correspondence to **-yuan **ao  (肖细元).

Ethics declarations

WANG **ao-yan, XIAO **-yuan, GUO Zhao-hui, PENG Chi, RICHMOND Anaman, XUE Sheng-guo, BRIDGET Ataa declare that they have no conflict of interest.

Additional information

Foundation item: Project(2019YFC1803600) supported by the National Key Research and Development Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xy., **ao, Xy., Guo, Zh. et al. Influence of pH on the leaching behaviour of heavy metal(loid)s in copper smelting flue dust and mineralogical control mechanism. J. Cent. South Univ. 31, 1121–1135 (2024). https://doi.org/10.1007/s11771-024-5630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5630-7

Key words

关键词

Navigation