Log in

Phosphorus additives driving the bacterial community succession during Bacillus spp. remediation of the uranium tailings

磷添加剂对Bacillus spp. 修复铀尾矿过程中细菌群落演替的驱动作用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Uranium tailings discharged into uranium tailings ponds could generate environmental pollution issues. Microbial-induced phosphate mineralization could reduce the release of uranium, in turn effectively managing pollution. However, it is unclear that how the phosphorus additives affect the microbial structure of uranium tailings under biomineralization. Herein, we evaluate the microbial community succession during Bacillus spp. remediation of uranium tailings, when adding hydroxyapatite (HS) and β-glycerol phosphate pentahydrate (GP). The results show that phosphorus additives effectively changed pH and uranium leaching concentration, significantly increased bacterial richness, and promoted microbial community succession, whilst promoting actinobacteria to Firmicutes and Proteobacteria populations. The two additives influenced the bacterial community succession patterns differently, with GP eliciting the greater enhancement. Additionally, GP enhanced the growth of core species and recognized the phylum firmicutes as a crucial taxon. The abundance of Bacillus, Pseudomonas, Desulfotomaculum, and Clostridium_sensu_stricto_12 was higher in GP treatments, indicating the substantial roles played by these genera in the microbial community. The results provide evidence of the involvement of the two phosphorus additives in bioremediation and bacterial community perturbations and thus provide new insights into the biomineralization technologies for uranium tailings.

摘要

铀尾矿库中堆积的铀尾矿会产生环境污染问题。生物矿化可以有效降低铀尾矿中铀的浸出,降 低铀尾矿的环境风险。然而,目前尚不清楚磷添加剂如何影响生物矿化过程中铀尾矿的微生物群落结 构。在本研究中,评估了羟基磷灰石(HS)和β-甘油磷酸五水合物(GP)作为添加剂对Bacillus spp. 修复铀 尾矿过程中的微生物群落演替的影响。结果表明,磷添加剂有效地改变铀尾矿浸出液的pH值和铀浸 出浓度,显著提高了微生物多样性,促进了微生物群落中门类微生物从actinobacteria 向firmicutes 和 proteobacteria 的演替。两种添加剂对细菌群落演替模式的影响不同,其中GP的促进作用较大。GP促 进了微生物群落结构中核心物种尤其是Firmicutes 的生长,在GP 处理中,Bacillus,Pseudomonas, Desulfotomaculum,和 Clostridium_sensu_stricto_12 的丰度较高,表明这些属类微生物在微生物群落中 发挥了重要作用。研究结果为磷添加剂参与生物修复和细菌群落演替提供了证据,从而为铀尾矿的生 物矿化技术提供理论支撑。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. CHEN An-wei, SHANG Cui, SHAO Ji-hai, et al. The application of iron-based technologies in uranium remediation: A review [J]. The Science of the Total Environment, 2017, 575: 1291–1306. DOI: https://doi.org/10.1016/j.scitotenv.2016.09.211.

    Article  Google Scholar 

  2. LAKANIEMI A M, DOUGLAS G B, KAKSONEN A H. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments [J]. Journal of Hazardous Materials, 2019, 371: 198–212. DOI: https://doi.org/10.1016/j.jhazmat.2019.02.074.

    Article  Google Scholar 

  3. XIE Yi, CHEN Chang-lun, REN Xue-mei, et al. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation [J]. Progress in Materials Science, 2019, 103: 180–234. DOI: https://doi.org/10.1016/j.pmatsci.2019.01.005.

    Article  Google Scholar 

  4. WELLMAN D M, PIERCE E M, VALENTA M M. Efficacy of soluble sodium tripolyphosphate amendments for the in situ immobilisation of uranium [J]. Environmental Chemistry, 2007, 4(5): 293. DOI: https://doi.org/10.1071/en07030.

    Article  Google Scholar 

  5. MEHTA V S, MAILLOT F, WANG Zhe-ming, et al. Effect of reaction pathway on the extent and mechanism of uranium(VI) immobilization with calcium and phosphate [J]. Environmental Science & Technology, 2016, 50(6): 3128–3136. DOI: https://doi.org/10.1021/acs.est.5b06212.

    Article  Google Scholar 

  6. AKASH S, SIVAPRAKASH B, RAJA V C V, et al. Remediation techniques for uranium removal from polluted environment—Review on methods, mechanism and toxicology [J]. Environmental Pollution, 2022, 302: 119068. DOI: https://doi.org/10.1016/j.envpol.2022.119068.

    Article  Google Scholar 

  7. HAN Tian-hao, CHEN Wei-wei, CAI Ya-wen, et al. Immobilization of uranium during the deposition of carbonated hydroxyapatite [J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134: 104331. DOI: https://doi.org/10.1016/j.jtice.2022.104331.

    Article  Google Scholar 

  8. TANG Chui-yun, ZHONG Juan, LYU Ying, et al. Research progress of uranium contaminated soil remediation technology [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4587–4599. DOI: https://doi.org/10.16085/j.issn.1000-6613.2020-1923. (in Chinese)

    Google Scholar 

  9. SELVAKUMAR R, RAMADOSS G, MENON M P, et al. Challenges and complexities in remediation of uranium contaminated soils: A review [J]. Journal of Environmental Radioactivity, 2018, 192: 592–603. DOI: https://doi.org/10.1016/j.jenvrad.2018.02.018.

    Article  Google Scholar 

  10. CHENG Cong-hui, CHEN Lu-yao, GUO Ke-xin, et al. Progress of uranium-contaminated soil bioremediation technology [J]. Journal of Environmental Radioactivity, 2022, 241: 106773. DOI: https://doi.org/10.1016/j.jenvrad.2021.106773.

    Article  Google Scholar 

  11. HU Zhong-qiang, ZHOU Zhong-kui, ZHOU Yao-yu, et al. Synergy of surface adsorption and intracellular accumulation for removal of uranium with Stenotrophomonas sp: Performance and mechanisms [J]. Environmental Research, 2023, 220: 115093. DOI: https://doi.org/10.1016/j.envres.2022.115093.

    Article  Google Scholar 

  12. BANALA U K, DAS N P I, TOLETI S R. Microbial interactions with uranium: Towards an effective bioremediation approach [J]. Environmental Technology & Innovation, 2021, 21: 101254. DOI: https://doi.org/10.1016/j.eti.2020.101254.

    Article  Google Scholar 

  13. MKANDAWIRE M. Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines [J]. Environmental Science and Pollution Research, 2013, 20(11): 7740–7767. DOI: https://doi.org/10.1007/s11356-013-1486-3.

    Article  Google Scholar 

  14. YOU Wen-bo, PENG Wan-ting, TIAN Zhi-chao, et al. Uranium bioremediation with U(VI) -reducing bacteria [J]. The Science of the Total Environment, 2021, 798: 149107. DOI: https://doi.org/10.1016/j.scitotenv.2021.149107.

    Article  Google Scholar 

  15. HU Nan, CHEN Xue, ZHANG Hui, et al. Experimental study on the remediation of low concentration uranium wastewater by Sporosarcina pasteurii induced carbonate-uranium co-precipitation [J]. CIESC Journal, 2021, 72(10): 5354–5361. DOI: https://doi.org/10.11949/0438-1157.20210533. (in Chinese)

    Google Scholar 

  16. TAN Wen-fa, WANG Ya-chao, DING Lei, et al. Effects of phosphorus modified bio-char on metals in uranium-containing soil [J]. Water, Air, & Soil Pollution, 2019, 230(2): 35. DOI: https://doi.org/10.1007/s11270-018-4074-9.

    Article  Google Scholar 

  17. RAICEVIC S, WRIGHT J, VELJKOVIC V, et al. Theoretical stability assessment of uranyl phosphates and apatites: Selection of amendments for in situ remediation of uranium [J]. The Science of the Total Environment, 2006, 355(1–3): 13–24. DOI: https://doi.org/10.1016/j.scitotenv.2005.03.006.

    Article  Google Scholar 

  18. CHANDWADKAR P, MISRA H S, ACHARYA C. Uranium biomineralization induced by a metal tolerant serratia strain under acid, alkaline and irradiated conditions [J]. Metallomics, 2018, 10(8): 1078–1088. DOI: https://doi.org/10.1039/c8mt00061a.

    Article  Google Scholar 

  19. LAMMERS L N, RASMUSSEN H, ADILMAN D, et al. Groundwater uranium stabilization by a metastable hydroxyapatite [J]. Applied Geochemistry, 2017, 84: 105–113. DOI: https://doi.org/10.1016/j.apgeochem.2017.06.001.

    Article  Google Scholar 

  20. CHEN Hao-ming, MIN Fang-fang, HU **n, et al. Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer [J]. Journal of Hazardous Materials, 2023, 452: 131176. DOI: https://doi.org/10.1016/j.jhazmat.2023.131176.

    Article  Google Scholar 

  21. TENG Ze-dong, ZHAO **n, YUAN Jun-jun, et al. Phosphate functionalized iron based nanomaterials coupled with phosphate solubilizing bacteria as an efficient remediation system to enhance lead passivation in soil [J]. Journal of Hazardous Materials, 2021, 419: 126433. DOI: https://doi.org/10.1016/j.jhazmat.2021.126433.

    Article  Google Scholar 

  22. LI **ao-long, DING Cong-cong, LIAO Jia-li, et al. Biosorption of uranium on Bacillus sp. dwc-2: Preliminary investigation on mechanism [J]. Journal of Environmental Radioactivity, 2014, 135: 6–12. DOI: https://doi.org/10.1016/j.jenvrad.2014.03.017.

    Article  Google Scholar 

  23. MARTINEZ R J, BEAZLEY M J, TAILLEFERT M, et al. Aerobic uranium(VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils [J]. Environmental Microbiology, 2007, 9(12): 3122–3133. DOI: https://doi.org/10.1111/j.1462-2920.2007.01422.x.

    Article  Google Scholar 

  24. YONG **, MACASKIE L E. Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymically-mediated growth of polycrystalline NH4UO2PO4 [J]. Journal of Chemical Technology & Biotechnology, 1995, 63(2): 101–108. DOI: https://doi.org/10.1002/jctb.280630202.

    Article  Google Scholar 

  25. SOWMYA S, REKHA P D, ARUN A B. Uranium(VI) bioprecipitation mediated by a phosphate solubilizing Acinetobacter sp. YU-SS-SB-29 isolated from a high natural background radiation site [J]. International Biodeterioration & Biodegradation, 2014, 94: 134–140. DOI: https://doi.org/10.1016/j.ibiod.2014.07.009.

    Article  Google Scholar 

  26. YU Qiu-han, YUAN Yi-hui, FENG Li-juan, et al. Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction [J]. Journal of Hazardous Materials D, 2022, 424: 127758. DOI: https://doi.org/10.1016/j.jhazmat.2021.127758.

    Article  Google Scholar 

  27. ZENG Tao-tao, MO Guan-hai, HU Qing, et al. Microbial characteristic and bacterial community assessment of sediment sludge upon uranium exposure [J]. Environmental Pollution, 2020, 261: 114176. DOI: https://doi.org/10.1016/j.envpol.2020.114176.

    Article  Google Scholar 

  28. MUMTAZ S, STRETEN C, PARRY D L, et al. Soil uranium concentration at ranger uranium mine land application areas drives changes in the bacterial community [J]. Journal of Environmental Radioactivity, 2018, 189: 14–23. DOI: https://doi.org/10.1016/j.jenvrad.2018.03.003.

    Article  Google Scholar 

  29. MARTINEZ R J, WU C H, BEAZLEY M J, et al. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments [J]. PLoS One, 2014, 9(6): e100383. DOI: https://doi.org/10.1371/journal.pone.0100383.

    Article  Google Scholar 

  30. NEWSOME L, MORRIS K, TRIVEDI D, et al. Biostimulation by glycerol phosphate to precipitate recalcitrant uranium(IV) phosphate [J]. Environmental Science & Technology, 2015, 49(18): 11070–11078. DOI: https://doi.org/10.1021/acs.est.5b02042.

    Article  Google Scholar 

  31. CRISITINA P, FADWA J, MARGARITA L, et al. Impact of anoxic conditions, uranium(VI) and organic phosphate substrate on the biogeochemical potential of the indigenous bacterial community of bentonite [J]. Applied Clay Science, 2022, 216: 106331. DOI: https://doi.org/10.1016/j.clay.2021.106331.

    Article  Google Scholar 

  32. ZHENG L, REN M, XIE E, et al. Roles of phosphorus sources in microbial community assembly for the removal of organic matters and ammonia in activated sludge [J]. Frontiers in Microbiology, 2019, 10: 1023. DOI: https://doi.org/10.3389/fmicb.2019.01023.

    Article  Google Scholar 

  33. TANG Chui-yun, ZHONG Juan, LV Ying, et al. Response and dynamic change of microbial community during bioremediation of uranium tailings by bacillus sp. [J]. Minerals, 2021, 11(9): 967. DOI: https://doi.org/10.3390/min11090967.

    Article  Google Scholar 

  34. ZHONG Juan, HU Xue-wu, LIU **ng-yu, et al. Isolation and identification of uranium tolerant phosphate-solubilizing Bacillus spp. and their synergistic strategies to U(VI) immobilization [J]. Frontiers in Microbiology, 2021, 12: 676391. DOI: https://doi.org/10.3389/fmicb.2021.676391.

    Article  Google Scholar 

  35. JIN Li, JIN Ning, WANG Shu-ya, et al. Changes in the microbial structure of the root soil and the yield of Chinese baby cabbage by chemical fertilizer reduction with bio-organic fertilizer application [J]. Microbiology Spectrum, 2022, 10(6): e0121522. DOI: https://doi.org/10.1128/spectrum.01215-22.

    Article  Google Scholar 

  36. LIAO Rong, SHI Ze-ming, CHEN Yue-jiao, et al. Characteristics of uranium sorption on illite in a ternary system: Effect of phosphate on adsorption [J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323(1): 159–168. DOI: https://doi.org/10.1007/s10967-019-06878-y.

    Article  Google Scholar 

  37. KONG Ling-jun, ZHANG Hui-min, JI Wei, et al. Recovery of phosphorus rich krill shell biowaste for uranium immobilization: A study of sorption behavior, surface reaction, and phase transformation [J]. Environmental Pollution A, 2018, 243: 630–636. DOI: https://doi.org/10.1016/j.envpol.2018.08.023.

    Article  Google Scholar 

  38. VEKATARAMAPPA R, MAHADEV N K, VENKATESH S, et al. Isolation, characterization and identification of multifaceted halotolerant bacillus licheniformis and bacillus wudalianchiensis from rhizospheric soils of Bangalore [J]. Journal of Microbiology, Biotechnology and Food Sciences, 2022: e3553. DOI: https://doi.org/10.55251/jmbfs.3553.

  39. CHEN Dan-yang, LI Han-quan, ZHANG Bing-huo, et al. Phosphate solubilization activities and action mechanisms of two phosphate-solubilizing bacteria [J]. Chinese Journal of Eco-Agriculture, 2017, 25(3): 410–418. DOI: https://doi.org/10.13930/j.cnki.cjea.160667. (in Chinese)

    Google Scholar 

  40. BEAZLEY M J, MARTINEZ R J, SOBECKY P A, et al. Nonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditions [J]. Geomicrobiology Journal, 2009, 26(7): 431–441. DOI: https://doi.org/10.1080/01490450903060780.

    Article  Google Scholar 

  41. AMARASINGHE T, MADHUSHA C, MUNAWEERA I, et al. Review on mechanisms of phosphate solubilization in rock phosphate fertilizer [J]. Communications in Soil Science and Plant Analysis, 2022, 53(8): 944–960. DOI: https://doi.org/10.1080/00103624.2022.2034849.

    Article  Google Scholar 

  42. VENKATRAMANAN R, PRAKASH O, WOYKE T, et al. Genome sequences for three denitrifying bacterial strains isolated from a uranium- and nitrate-contaminated subsurface environment [J]. Genome Announcements, 2013, 1(4): e00449–e00413. DOI: https://doi.org/10.1128/genomeA.00449-13.

    Article  Google Scholar 

  43. WAN Wen-jie, HAO **u-li, XING Yong-hui, et al. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization [J]. Land Degradation & Development, 2021, 32(2): 766–776. DOI: https://doi.org/10.1002/ldr.3734.

    Article  Google Scholar 

  44. ZHANG Wen-hui, SUN Rui-bo, XU Lei, et al. Assessment of bacterial communities in Cu-contaminated soil immobilized by a one-time application of micro-/ nano-hydroxyapatite and phytoremediation for 3 years [J]. Chemosphere, 2019, 223: 240–249. DOI: https://doi.org/10.1016/j.chemosphere.2019.02.049.

    Article  Google Scholar 

  45. WEI Liu, WANG Shu-tao, ZUO Qing-qing, et al. Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil [J]. Environmental Science Processes & Impacts, 2016, 18(6): 760–767. DOI: https://doi.org/10.1039/c6em00121a.

    Article  Google Scholar 

  46. LIU Si-jia, LIU Yun-guo, TAN **ao-fei, et al. The effect of several activated biochars on Cd immobilization and microbial community composition during in situ remediation of heavy metal contaminated sediment [J]. Chemosphere, 2018, 208: 655–664. DOI: https://doi.org/10.1016/j.chemosphere.2018.06.023.

    Article  Google Scholar 

  47. SHARMA P, PANDEY A K, KIM S H, et al. Critical review on microbial community during in situ bioremediation of heavy metals from industrial wastewater [J]. Environmental Technology & Innovation, 2021, 24: 101826. DOI: https://doi.org/10.1016/j.eti.2021.101826.

    Article  Google Scholar 

  48. SANTINI T C, KERR J L, WARREN L A. Microbially-driven strategies for bioremediation of bauxite residue [J]. Journal of Hazardous Materials, 2015, 293: 131–157. DOI: https://doi.org/10.1016/j.jhazmat.2015.03.024.

    Article  Google Scholar 

  49. SHEN Ju-pei, XU Zhi-hong, HE Ji-zheng. Frontiers in the microbial processes of ammonia oxidation in soils and sediments [J]. Journal of Soils and Sediments, 2014, 14(6): 1023–1029. DOI: https://doi.org/10.1007/s11368-014-0872-x.

    Article  Google Scholar 

  50. YANG Yang, LI Gen, MIN Kai-kai, et al. The potential role of fertilizer-derived exogenous bacteria on soil bacterial community assemblage and network formation [J]. Chemosphere, 2022, 287(3): 132338. DOI: https://doi.org/10.1016/j.chemosphere.2021.132338.

    Article  Google Scholar 

  51. YANG Hong-xing, ZHANG Yan-lin, CHUANG Shao-chuang, et al. Bioaugmentation of acetamiprid-contaminated soil with Pigmentiphaga sp. strain D-2 and its effect on the soil microbial community [J]. Ecotoxicology, 2021, 30(8): 1559–1571. DOI: https://doi.org/10.1007/s10646-020-02336-8.

    Article  Google Scholar 

  52. CRISTINA P, FADWA J, MAR M, et al. Unveiling fungal diversity in uranium and glycerol-2-phosphate-amended bentonite microcosms: Implications for radionuclide immobilization within the Deep Geological Repository system [J]. Science of the Total Environment, 2024, 908: 168284. DOI: https://doi.org/10.1016/j.scitotenv.2023.168284.

    Article  Google Scholar 

  53. CRISTINA P, FADWA J, MARGARITA L, et al. Shifts in bentonite bacterial community and mineralogy in response to uranium and glycerol-2-phosphate exposure [J]. The Science of the Total Environment, 2019, 692: 219–232. DOI: https://doi.org/10.1016/j.scitotenv.2019.07.228.

    Article  Google Scholar 

  54. WANG Guo-hua, LIU Ying, WANG Jia-li, et al. The remediation of uranium-contaminated groundwater via bioreduction coupled to biomineralization with different pH and electron donors [J]. Environmental Science and Pollution Research International, 2023, 30(9): 23096–23109. DOI: https://doi.org/10.1007/s11356-022-23902-z.

    Article  Google Scholar 

  55. LV Ying, TANG Chui-yun, LIU **ng-yu, et al. Optimization of environmental conditions for microbial stabilization of uranium tailings, and the microbial community response [J]. Frontiers in Microbiology, 2021, 12: 770206. DOI: https://doi.org/10.3389/fmicb.2021.770206.

    Article  Google Scholar 

  56. LIU Huan, CHEN Si-guang, LU Jian-**, et al. Pentavalent vanadium and hexavalent uranium removal from groundwater by woodchip-sulfur based mixotrophic biotechnology [J]. Chemical Engineering Journal, 2022, 437: 135313. DOI: https://doi.org/10.1016/j.cej.2022.135313.

    Article  Google Scholar 

  57. SURIYA J, CHANDRA SHEKAR M, NATHANI N M, et al. Assessment of bacterial community composition in response to uranium levels in sediment samples of sacred Cauvery River [J]. Applied Microbiology and Biotechnology, 2017, 101(2): 831–841. DOI: https://doi.org/10.1007/s00253-016-7945-2.

    Article  Google Scholar 

  58. AN Yi-fu, SUN Juan, GAO Yang, et al. Variation of microbial community diversity with long-term exposure of radionuclides in dry uranium tailings pond [J]. China Environmental Science, 2021, 41(2): 923–929. DOI: https://doi.org/10.19674/j.cnki.issn1000-6923.2021.0103. (in Chinese)

    Google Scholar 

  59. ISLAM E, DHAL P K, KAZY S K, et al. Molecular analysis of bacterial communities in uranium ores and surrounding soils from Banduhurang open cast uranium mine, India: A comparative study [J]. Journal of Environmental Science and Health Part A, 2011, 46(3): 271–280. DOI: https://doi.org/10.1080/10934529.2011.535433.

    Article  Google Scholar 

  60. WILLIAMSON A J, MORRIS K, LAW G T W, et al. Microbial reduction of U(VI) under alkaline conditions: Implications for radioactive waste geodisposal [J]. Environmental Science & Technology, 2014, 48(22): 13549–13556. DOI: https://doi.org/10.1021/es5017125.

    Article  Google Scholar 

  61. LV Ying, TANG Chui-yun, LIU **ng-yu, et al. Stabilization and mechanism of uranium sequestration by a mixed culture consortia of sulfate-reducing and phosphate-solubilizing bacteria [J]. The Science of the Total Environment, 2022, 827: 154216. DOI: https://doi.org/10.1016/j.scitotenv.2022.154216.

    Article  Google Scholar 

  62. VISHNIVETSKAYA T A, BRANDT C C, MADDEN A S, et al. Microbial community changes in response to ethanol or methanol amendments for U(VI) reduction [J]. Applied and Environmental Microbiology, 2010, 76(17): 5728–5735. DOI: https://doi.org/10.1128/aem.00308-10.

    Article  Google Scholar 

  63. LIU Huai-ting, HONG Zhi-qi, LIN Jia-hui, et al. Bacterial coculture enhanced Cd sorption and As bioreduction in co-contaminated systems [J]. Journal of Hazardous Materials A, 2023, 444: 130376. DOI: https://doi.org/10.1016/j.jhazmat.2022.130376.

    Article  Google Scholar 

  64. LI Yi-hao, WANG Hui-min, WU **-xiao, et al. Bioreduction of hexavalent chromium on goethite in the presence of Pseudomonas aeruginosa [J]. Environmental Pollution, 2020, 265: 114765. DOI: https://doi.org/10.1016/j.envpol.2020.114765.

    Article  Google Scholar 

  65. STORY S, BRIGMON R L. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase [J]. Ecotoxicology and Environmental Safety, 2017, 137: 165–171. DOI: https://doi.org/10.1016/j.ecoenv.2016.12.003.

    Article  Google Scholar 

  66. MARTINS M, FALEIRO M L, CHAVES S, et al. Effect of uranium(VI) on two sulphate-reducing bacteria cultures from a uranium mine site [J]. The Science of the Total Environment, 2010, 408(12): 2621–2628. DOI: https://doi.org/10.1016/j.scitotenv.2010.02.032.

    Article  Google Scholar 

  67. CECCHI G, CECI A, MARESCOTTI P, et al. Interactions among microfungi and pyrite-chalcopyrite mineralizations: Tolerance, mineral bioleaching, and metal bioaccumulation [J]. Mycological Progress, 2019, 18(3): 415–423. DOI: https://doi.org/10.1007/s11557-018-01466-y.

    Article  Google Scholar 

  68. GAZITÚA M C, MORGANTE V, POUPIN M J, et al. The microbial community from the early-plant colonizer (Baccharis linearis) is required for plant establishment on copper mine tailings [J]. Scientific Reports, 2021, 11: 10448. DOI: https://doi.org/10.1038/s41598-021-89769-1.

    Article  Google Scholar 

  69. XUE Sheng-guo, ZHU Feng, KONG **ang-feng, et al. A review of the characterization and revegetation of bauxite residues (Red mud) [J]. Environmental Science and Pollution Research, 2016, 23(2): 1120–1132. DOI: https://doi.org/10.1007/s11356-015-4558-8.

    Article  Google Scholar 

  70. LI Hao, YAO Jun, MIN Ning, et al. Microbial metabolic activity in metal(loid)s contaminated sites impacted by different non-ferrous metal activities [J]. Journal of Hazardous Materials, 2023, 459: 132005. DOI: https://doi.org/10.1016/j.jhazmat.2023.132005.

    Article  Google Scholar 

  71. KE Wen-shun, ZHANG **an-chao, ZHU Feng, et al. Appropriate human intervention stimulates the development of microbial communities and soil formation at a long-term weathered bauxite residue disposal area [J]. Journal of Hazardous Materials, 2021, 405: 124689. DOI: https://doi.org/10.1016/j.jhazmat.2020.124689.

    Article  Google Scholar 

  72. CARDONA C, WEISENHORN P, HENRY C, et al. Network-based metabolic analysis and microbial community modeling [J]. Current Opinion in Microbiology, 2016, 31: 124–131. DOI: https://doi.org/10.1016/j.mib.2016.03.008.

    Article  Google Scholar 

  73. LI L, WANG S, LI X, et al. Effects of Pseudomonas chenduensis and biochar on cadmium availability and microbial community in the paddy soil [J]. The Science of the Total Environment, 2018, 640–641: 1034–1043. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.287.

    Article  Google Scholar 

  74. SHI An, HU Ying, ZHANG ** rhizospheric microbial community [J]. Environmental Pollution, 2023, 327: 121559. DOI: https://doi.org/10.1016/j.envpol.2023.121559.

    Article  Google Scholar 

  75. SANTOLINI M, BARABÁSI A L. Predicting perturbation patterns from the topology of biological networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(27): E6375–E6383. DOI: https://doi.org/10.1073/pnas.1720589115.

    Google Scholar 

  76. LIU Sheng-wei, YU Huang, YU Yu-he, et al. Ecological stability of microbial communities in Lake Donghu regulated by keystone taxa [J]. Ecological Indicators, 2022, 136: 108695. DOI: https://doi.org/10.1016/j.ecolind.2022.108695.

    Article  Google Scholar 

  77. LIU Bang, YAO Jun, MA Bo, et al. Metal(loid)s diffusion pathway triggers distinct microbiota responses in key regions of typical Karst non-ferrous smelting assembly [J]. Journal of Hazardous Materials B, 2022, 423: 127164. DOI: https://doi.org/10.1016/j.jhazmat.2021.127164.

    Article  Google Scholar 

  78. LIU Xue-qing, LIU Hong-run, ZHANG Yu-shi, et al. Organic amendments alter microbiota assembly to stimulate soil metabolism for improving soil quality in wheat-maize rotation system [J]. Journal of Environmental Management, 2023, 339: 117927. DOI: https://doi.org/10.1016/j.jenvman.2023.117927.

    Article  Google Scholar 

  79. KE Wen-shun, LI Chu-xuan, ZHU Feng, et al. Effect of potentially toxic elements on soil multifunctionality at a lead smelting site [J]. Journal of Hazardous Materials, 2023, 454: 131525. DOI: https://doi.org/10.1016/j.jhazmat.2023.131525.

    Article  Google Scholar 

  80. YAO Yu-xuan, ZHANG Xuan, HUANG Zhong-liang, et al. A field study on the composition, structure, and function of endophytic bacterial community of Robinia pseudoacacia at a composite heavy metals tailing [J]. The Science of the Total Environment, 2022, 850: 157874. DOI: https://doi.org/10.1016/j.scitotenv.2022.157874.

    Article  Google Scholar 

  81. ZHANG Li-lan, YI Mei-ling, LU Pei-li. Effects of pyrene on the structure and metabolic function of soil microbial communities [J]. Environmental Pollution, 2022, 305: 119301. DOI: https://doi.org/10.1016/j.envpol.2022.119301.

    Article  Google Scholar 

  82. FU **an-heng, SONG Qi-long, LI Shi-qing, et al. Dynamic changes in bacterial community structure are associated with distinct priming effect patterns [J]. Soil Biology and Biochemistry, 2022, 169: 108671. DOI: https://doi.org/10.1016/j.soilbio.2022.108671.

    Article  Google Scholar 

  83. XIA Yu, WEN **ang-hua, ZHANG Bing, et al. Diversity and assembly patterns of activated sludge microbial communities: A review [J]. Biotechnology Advances, 2018, 36(4): 1038–1047. DOI: https://doi.org/10.1016/j.biotechadv.2018.03.005.

    Article  Google Scholar 

  84. CARUSO T, CHAN Y, LACAP D C, et al. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale [J]. The ISME Journal, 2011, 5(9): 1406–1413. DOI: https://doi.org/10.1038/ismej.2011.21.

    Article  Google Scholar 

  85. MENDES L W, KURAMAE E E, NAVARRETE A A, et al. Taxonomical and functional microbial community selection in soybean rhizosphere [J]. The ISME Journal, 2014, 8(8): 1577–1587. DOI: https://doi.org/10.1038/ismej.2014.17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TANG Chui-yun provided the concept and edited the draft of manuscript, ZHONG Juan conducted relevant experiments, LIU **ng-yu edited the draft of manuscript and provided funding acquisition, supervision. YAO Jun, LYU Ying and LI Mu-jiang revised the language and structure of the paper.

Corresponding author

Correspondence to **ng-yu Liu  (刘兴宇).

Ethics declarations

TANG Chui-yun, ZHONG Juan, LYU Ying, YAO Jun, LI Mu-jiang, and LIU **ng-yu declare that they have no conflict of interest.

Additional information

Foundation item: Projects(51974279, 42330713) supported by the National Natural Science Foundation of China

Supplementary materials

Please scan the QR code or visit the URL link to get the supporting information http://qr.csupress.com.cn/Public/ResourceList/Detail/51612

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Cy., Zhong, J., Lyu, Y. et al. Phosphorus additives driving the bacterial community succession during Bacillus spp. remediation of the uranium tailings. J. Cent. South Univ. 31, 1233–1247 (2024). https://doi.org/10.1007/s11771-024-5628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5628-1

Key words

关键词

Navigation