Log in

Effect of high-voltage electric pulse stimulation on heated-granite: An experimental investigation

高压电脉冲刺激对于热处理花岗岩影响的实验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

High-voltage electric pulse (HVEP) technology merits further investigation into its potential applications. The effectiveness of using HVEP to induce pre-damage and deteriorate hot dry rock (HDR) was investigated in this study. Different peak voltages of HVEP were applied to heated-granite flake specimens. Furthermore, the influence of temperature on HVEP stimulating granite was investigated. The results show that when the applied peak voltages exceeded 96 kV, through-fracture failure occurred in the heated-granite specimens, with higher voltages producing more complex through-fracture networks. The microcrack density of granite specimens increased from 8.63 mm/mm2 to 13.26 mm/mm2 when the applied voltage rose from 96 kV to 144 kV. Notably, the difficulty of granite electrical breakdown gradually decreased with the increasing temperature of thermal treatment. Through-fracture failures were observed in all granite specimens heated above 400 °C after three HVEP discharges at 120 kV. The maximum damage caused by HVEP was found within the temperature range of 300–400 °C. Additionally, an escalation in the development of internal pores and cracks as the granite specimen temperature increased was observed by using scanning electron microscopy (SEM), accompanied by an increase in pore size and crack width and depth.

摘要

高压电脉冲技术作为一种环保、可控、高效的破碎坚硬岩石的方法, 其潜在应用场景值得进一 步深入发掘。本文研究了高压电脉冲诱导干热岩产生预损伤和劣化方法的效果。对热处理后花岗岩薄 片试样施加了不同峰值电压的高压电脉冲刺激, 探讨了高压电脉冲对于热处理花岗岩的影响。此外, 还研究了初始温度对高压电脉冲刺激花岗岩的影响。结果表明:当外加峰值电压超过96 kV时, 热处 理花岗岩试样发生贯穿性的破裂, 峰值电压越高, 贯穿裂纹网络越复杂。当电压从96 kV增加到144 kV 时, 花岗岩试样的微裂纹密度从8.63 mm/mm2增加到13.26 mm/mm2。随着热处理温度的升高, 花 岗岩发生电击穿的难度逐渐降低。在120 kV电脉冲放电刺激3 次后, 所有热处理温度高于400 ℃的花 岗岩试样均能发生贯穿破裂。高压电脉冲刺激造成花岗岩产生的最大损伤发生在300∼400 ℃的温度区 间内。通过扫描电子显微镜观察到, 随着试样处理温度的升高, 内部孔隙和裂缝的发育情况逐渐加 剧, 孔隙大小、裂缝宽度和深度也随之增加。这项研究有望为建造干热岩人工储层提供新的见解。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. DI FRAIA S, MACALUSO A, MASSAROTTI N, et al. Energy, exergy and economic analysis of a novel geothermal energy system for wastewater and sludge treatment [J]. Energy Conversion and Management, 2019, 195: 533–547. DOI: https://doi.org/10.1016/j.enconman.2019.05.035.

    Article  Google Scholar 

  2. CHEN Yun, MA Guo-wei, WANG Hui-dong, et al. Evaluation of geothermal development in fractured hot dry rock based on three dimensional unified pipe-network method [J]. Applied Thermal Engineering, 2018, 136: 219–228. DOI: https://doi.org/10.1016/j.applthermaleng.2018.03.008.

    Article  Google Scholar 

  3. ZHUANG Deng-deng, YIN Tu-bing, LI Qiang, et al. Effect of injection flow rate on fracture toughness during hydraulic fracturing of hot dry rock (HDR) [J]. Engineering Fracture Mechanics, 2022, 260: 108207. DOI: https://doi.org/10.1016/j.engfracmech.2021.108207.

    Article  Google Scholar 

  4. LUO **, ZHU Yong-qiang, GUO Qing-hai, et al. Chemical stimulation on the hydraulic properties of artificially fractured granite for enhanced geothermal system [J]. Energy, 2018, 142: 754–764. DOI: https://doi.org/10.1016/j.energy.2017.10.086.

    Article  Google Scholar 

  5. YANG Rui-yue, HUANG Zhong-wei, SHI Yu, et al. Laboratory investigation on cryogenic fracturing of hot dry rock under triaxial-confining stresses [J]. Geothermics, 2019, 79: 46–60. DOI: https://doi.org/10.1016/j.geothermics.2019.01.008.

    Article  Google Scholar 

  6. ZHANG Shi-kun, HUANG Zhong-wei, ZHANG Hong-yuan, et al. Experimental study of thermal-crack characteristics on hot dry rock impacted by liquid nitrogen jet [J]. Geothermics, 2018, 76(November 2018): 253–260. DOI: https://doi.org/10.1016/j.geothermics.2018.08.002.

    Article  Google Scholar 

  7. KUMARI W G P, RANJTH P G. Sustainable development of enhanced geothermal systems based on geotechnical research—A review [J]. Earth-Science Reviews, 2019, 199: 102955. DOI: https://doi.org/10.1016/j.earscirev.2019.102955.

    Article  Google Scholar 

  8. ELLSWORTH W L. Injection-induced earthquakes [J]. Science, 2013, 341: 1225942. DOI: https://doi.org/10.1126/science.1225942.

    Article  Google Scholar 

  9. ANDRES U. Electrical disintegration of rock [J]. Mineral Processing and Extractive Metallurgy Review, 1995, 14(2): 87–110. DOI: https://doi.org/10.1080/08827509508914118.

    Article  Google Scholar 

  10. ANDERS E, VOIGT M, LEHMANN F, et al. Electric impulse drilling: The future of drilling technology begins now [C]// Proceedings of ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, June 25–30, 2017, Trondheim, Norway. 2017. DOI: https://doi.org/10.1115/OMAE2017-61105.

  11. VOROB’EV G A. Electrical breakdown in solid dielectrics [J]. Physics of the Solid State, 2005, 47(6): 1083. DOI: https://doi.org/10.1134/1.1946860.

    Article  Google Scholar 

  12. ZHANG **ang-liang, LIN Bai-quan, LI Yan-jun, et al. Enhancement effect of NaCl solution on pore structure of coal with high-voltage electrical pulse treatment [J]. Fuel 2019, 235: 744–52. DOI: https://doi.org/10.1016/j.fuel.2018.08.049.

    Article  Google Scholar 

  13. ZHU **ao-hua, CHEN Meng-qiu, LIU Wei-ji, et al. The fragmentation mechanism of heterogeneous granite by highvoltage electrical pulses [J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 4351–4372. DOI: https://doi.org/10.1007/s00603-022-02874-z.

    Article  Google Scholar 

  14. LI Chang-**, DUAN Long-chen, TAN Song-cheng, et al. An electro breakdown damage model for granite and simulation of deep drilling by high-voltage electropulse boring [J]. Shock and Vibration, 2019: 7149680. DOI: https://doi.org/10.1155/2019/7149680.

  15. VOROB’EV G A. Mechanism of breakdown of solid dielectrics with microroughnesses present on the cathode [J]. Soviet Physics Journal, 1972, 15(10): 1519–1520. DOI: https://doi.org/10.1007/BF00892113.

    Article  Google Scholar 

  16. ANDRES U T. Liberation study of apatite-nepheline ore comminuted by penetrating electrical discharges [J]. International Journal of Mineral Processing, 1977, 4(1): 33–38. DOI: https://doi.org/10.1016/0301-7516(77)90029-1.

    Article  Google Scholar 

  17. WANG E, SHI Feng-nian, MANLAPIG E. Pre-weakening of mineral ores by high voltage pulses [J]. Minerals Engineering, 2011, 24(5): 455–462. DOI: https://doi.org/10.1016/j.mineng.2010.12.011.

    Article  Google Scholar 

  18. INOUE H, LISITSYN I V, AKIYAMA H, et al. Drilling of hard rocks by pulsed power [J]. IEEE Electrical Insulation Magazine, 2000, 16(3): 19–25. DOI: https://doi.org/10.1109/57.845023.

    Article  Google Scholar 

  19. SCHIEGG H O, RØDLAND A, ZHU Gui-zhi, et al. Electro-pulse-boring (EPB): Novel super-deep drilling technology for low cost electricity [J]. Journal of Earth Science, 2015, 26(1): 37–46. DOI: https://doi.org/10.1007/s12583-015-0519-x.

    Article  Google Scholar 

  20. LIU Wei-ji, ZHANG You-jian, ZHU **ao-hua. The partial electrical breakdown mechanism by high voltage electric pulses in multi-fractured granite [J]. Geomechanics for Energy and the Environment, 2023, 34: 100459. DOI: https://doi.org/10.1016/j.gete.2023.100459.

    Article  Google Scholar 

  21. YAN Fa-zhi, LIN Bai-quan, ZHU Chuan-jie, et al. Using high-voltage electrical pulses to crush coal in an air environment: An experimental study [J]. Powder Technology, 2016, 298: 50–56. DOI: https://doi.org/10.1016/j.powtec.2016.05.023.

    Article  Google Scholar 

  22. LI Yuan-sheng, FENG Bing-yang, LIU Jun, et al. Coal desulfurization and deashing by high voltage pulse treatment in tap water [J]. Fuel, 2022, 324: 124621. DOI: https://doi.org/10.1016/j.fuel.2022.124621.

    Article  Google Scholar 

  23. BAO **an-kai, GUO Jun-yu, LIU Yuan, et al. Damage characteristics and laws of micro-crack of underwater electric pulse fracturing coal-rock mass [J]. Theoretical and Applied Fracture Mechanics, 2021, 111: 102853. DOI: https://doi.org/10.1016/j.tafmec.2020.102853.

    Article  Google Scholar 

  24. PENG Jian-yu, DU Chuan, ZHANG Feng-peng, et al. Fracture and fragmentation of granite specimen under high-voltage pulses [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(6): 200. DOI: https://doi.org/10.1007/s40948-022-00507-x.

    Article  Google Scholar 

  25. LI Chang-**, DUAN Long-chen, TAN Song-cheng, et al. Influences on high-voltage electro pulse boring in granite [J]. Energies, 2018, 11(9): 2461. DOI: https://doi.org/10.3390/en11092461.

    Article  Google Scholar 

  26. TANG Zhi-cheng, SUN Meng, PENG Jun. Influence of high temperature duration on physical, thermal and mechanical properties of a fine-grained marble [J]. Applied Thermal Engineering, 2019, 156: 34–50. DOI: https://doi.org/10.1016/j.applthermaleng.2019.04.039.

    Article  Google Scholar 

  27. YIN Tu-bing, LI **-bing, XIA Kai-wen, et al. Effect of thermal treatment on the dynamic fracture toughness of laurentian granite [J]. Rock Mechanics and Rock Engineering, 2012, 45(6): 1087–1094. DOI: https://doi.org/10.1007/s00603-012-0240-3.

    Article  Google Scholar 

  28. ROSSI E, KANT M A, MADONNA C, et al. The effects of high heating rate and high temperature on the rock strength: Feasibility study of a thermally assisted drilling method [J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2957–2964. DOI: https://doi.org/10.1007/s00603-018-1507-0.

    Article  Google Scholar 

  29. YIN Tu-bing, ZHUANG Deng-deng, LI Qiang, et al. Temperature-dependent factors on hydraulic fracturing of hot dry rock (HDR): An experimental investigation [J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(3): 032023. DOI: https://doi.org/10.1088/1755-1315/570/3/032023.

    Google Scholar 

  30. YIN Tu-bing, LI **-bing, CAO Wen-zhuo, et al. Effects of thermal treatment on tensile strength of laurentian granite using Brazilian test [J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2213–2223. DOI: https://doi.org/10.1007/s00603-015-0712-3.

    Article  Google Scholar 

  31. LI Yan-jun, LIN Bai-quan, ZHANG **ang-liang. Effect of temperature on structural evolution and breakdown electrical characteristics of bituminous coal subjected to plasma breakage [J]. Fuel, 2022, 328: 125346. DOI: https://doi.org/10.1016/j.fuel.2022.125346.

    Article  Google Scholar 

  32. ZHANG Wei-qiang. Experimental study of the effect of thermal damage on resistivity and mechanical properties of sandstone [J]. Acta Geodynamica et Geomaterialia, 2015, 13(2): 185–192. DOI: https://doi.org/10.13168/agg.2015.0056.

    Article  Google Scholar 

  33. ANDRES U, TIMOSHKIN I, SOLOVIEV M. Energy consumption and liberation of minerals in explosive electrical breakdown of ores [J]. Mineral Processing and Extractive Metallurgy, 2001, 110(3): 149–157. DOI: https://doi.org/10.1179/mpm.2001.110.3.149.

    Article  Google Scholar 

  34. ZHU **ao-hua, LUO Yun-xu, LIU Wei-ji. On the rock-breaking mechanism of plasma channel drilling technology [J]. Journal of Petroleum Science and Engineering, 2020, 194: 107356. DOI: https://doi.org/10.1016/j.petrol.2020.107356.

    Article  Google Scholar 

  35. GAN Hao-nan, WANG Gui-ling, LIN Wen-**g, et al. Research on the occurrence types and genetic models of hot dry rock resources in China [J]. Science & Technology Review, 2015, 33(19): 22–27. DOI: https://doi.org/10.3981/j.issn.1000-7857.2015.19.002.

    Google Scholar 

  36. LI Ting-xin, LIN Wen-**g, GAN Hao-nan, et al. Research on the genetic model and exploration progress of hot dry rock resources on the southeast coast of China [J]. Journal of Geomechanics, 2020, 26: 187–200. DOI: https://doi.org/10.12090/j.issn.1006-6616.2020.26.02.018. (in Chinese)

    Google Scholar 

  37. WALSH S D C, VOGLER D. Simulating electropulse fracture of granitic rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 104238. DOI: https://doi.org/10.1016/j.ijrmms.2020.104238.

    Article  Google Scholar 

  38. HE Meng-bing, JIANG **-bo, HUANG Guo-liang, et al. Disintegration of rocks based on magnetically isolated high voltage discharge [J]. Review of Scientific Instruments, 2013, 84: 024704. DOI: https://doi.org/10.1063/1.4792433. (in Chinese)

    Article  Google Scholar 

  39. ZHANG **ang-liang, LIN Bai-quan, LI Yan-jun, et al. Experimental study on the effect of coal thickness and breakdown voltage on energy conversion during electrical disintegration [J]. Fuel, 2020, 259: 116135. DOI: https://doi.org/10.1016/j.fuel.2019.116135.

    Article  Google Scholar 

  40. ANDRES U. Parameters of disintegration of rock by electrical pulses [J]. Powder Technology, 1989, 58(4): 265–269. DOI: https://doi.org/10.1016/0032-5910(89)80053-1.

    Article  Google Scholar 

  41. LI Chang-**, DUAN Long-chen, KANG Ji-feng, et al. Weight analysis and experimental study on influencing factors of high-voltage electro-pulse boring [J]. Journal of Petroleum Science and Engineering, 2021, 205: 108807. DOI: https://doi.org/10.1016/j.petrol.2021.108807.

    Article  Google Scholar 

  42. NASSERI M H B, SCHUBNEL A, BENSON P M, et al. Common evolution of mechanical and transport properties in thermally cracked westerly granite at elevated hydrostatic pressure [J]. Pure and Applied Geophysics, 2009, 166(5): 927–948. DOI: https://doi.org/10.1007/s00024-009-0485-2.

    Article  Google Scholar 

  43. KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 1–30. DOI: https://doi.org/10.1002/nag.1610120102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YIN Tu-bing provided funding and resources. ZHUANG Deng-deng contributed to investigation, validation, formal analysis, writing-review and editing. LIU Cheng-hui contributed in writing-original draft, methodology, and data organization. LI **-bing guided the whole process.

Corresponding author

Correspondence to Deng-deng Zhuang  (庄登登).

Ethics declarations

YIN Tu-bing, LIU Cheng-hui, ZHUANG Deng-deng and LI **-bing declare that they have no conflict of interest.

Additional information

Foundation item: Project(41972283) supported by the National Natural Science Foundation of China; Project(2023JJ306623) supported by the Hunan Provincial Natural Science Foundation of China; Project(2023ZZTS802) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Tb., Liu, Ch., Zhuang, Dd. et al. Effect of high-voltage electric pulse stimulation on heated-granite: An experimental investigation. J. Cent. South Univ. 31, 1526–1541 (2024). https://doi.org/10.1007/s11771-024-5619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5619-2

Key words

关键词

Navigation