Log in

Pt nanoparticles on ITO nanowires for electrochemical detection of L-ascorbic acid and dopamine

ITO纳米线原位包覆Pt纳米粒子用于电化学检测抗坏血酸和多巴胺

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

L-ascorbic acid (AA, also known as vitamin C) and dopamine (DA) play important roles in human life activities. When their concentrations are abnormal, they will cause diseases. Therefore, it is of great interest to develop an effective strategy to detect AA and DA levels. Here, anodic aluminum oxide (AAO) films were used as templates to fabricate indium-tin (InSn) alloy nanowires (NWs) by vacuum mechanical injection method, and then Pt nanoparticles were coated on the surface of the InSn NWs by means of the “in-situ discharge reduction” method. Subsequently, the composites were exposed in air for heat treatment to synthesize PtO2/indium-tin oxide (ITO) NWs. Finally, PtO2/ITO NWs were reduced under H2 atmosphere to obtain Pt/ITO NWs. The results show that the diameter of the InSn NWs is ∼40 nm and Pt nanoparticles with 2–5 nm are uniformly coated on the surface of the ITO NWs. Additionally, the performance of electrochemical detection of AA and DA on the Pt/ITO NWs electrode is tested by the cyclic voltammetry and differential pulse strip** voltammetry. The Pt/ITO NWs electrode has low detection limits in the detection of AA (66.7 µM) and DA (1 µM), which reveals the good electrochemical detection of AA and DA.

摘要

L-抗坏血酸(AA, 又称维生素C)和多巴胺(DA)在人类生命活动中起着重要作用, 当它们的浓度 异常时就会引起疾病。因此, 开发一种有效地检测AA和DA水**的方法具有重要的意义。以阳极氧化 铝(AAO)薄膜为模板, 采用真空机械注入法制备铟锡(InSn)合金纳米线(NWs), 然后采用原位放电还原 法在InSn 纳米线表面涂覆Pt 纳米颗粒并将复合材料暴露在空气中进行热处理, 以合成PtO2/ITO(氧化铟 锡)纳米线。最后, 在H2气氛下还原PtO2/ITO纳米线, 得到Pt/ITO纳米线。结果表明, 在Pt/ITO纳米 线复合材料中, ITO纳米线直径约为40 nm, Pt 纳米颗粒的粒径为2~5 nm。采用循环伏安法和差分脉 冲伏安法测试了在Pt/ITO NWs 电极上检测AA和DA的电化学性能。Pt/ITO NWs 电极对AA(66.7 μmol/L) 和DA(1 μmol/L)的检出限较低, 表明了电极对AA和DA良好的电化学检测能力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. ARRIGONI O, DE TULLIO M C. Ascorbic acid: Much more than just an antioxidant [J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2002, 1569(1–3): 1–9. DOI: https://doi.org/10.1016/S0304-4165(01)00235-5.

    Article  Google Scholar 

  2. NISHIKIMI M, YAGI K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis [J]. The American Journal of Clinical Nutrition, 1991, 54(6): 1203S–1208S. DOI: https://doi.org/10.1093/ajcn/54.6.1203s.

    Article  Google Scholar 

  3. AMES B N, SHIGENAGA M K, HAGEN T M. Oxidants, antioxidants, and the degenerative diseases of aging [J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(17): 7915–7922. DOI: https://doi.org/10.1073/pnas.90.17.7915.

    Article  Google Scholar 

  4. AL KIEY S A, KHALIL A M, KAMEL S. Insight into TEMPO-oxidized cellulose-based composites as electrochemical sensors for dopamine assessment [J]. International Journal of Biological Macromolecules, 2023, 239: 124302. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124302.

    Article  Google Scholar 

  5. JIANG Jie, CAO Yu-chen, LIU Ji-lin, et al. Mass spectrometric observation on free radicals during electrooxidation of dopamine [J]. Analytica Chimica Acta, 2022, 1193: 339403. DOI: https://doi.org/10.1016/j.aca.2021.339403.

    Article  Google Scholar 

  6. YEBRA M C, CESPÓN R M, MORENO-CID A. Automatic determination of ascorbic acid by flame atomic absorption spectrometry [J]. Analytica Chimica Acta, 2001, 448(1–2): 157–164. DOI: https://doi.org/10.1016/S0003-2670(01)01327-7.

    Article  Google Scholar 

  7. BITZIOU E, SNOWDEN M E, JOSEPH M B, et al. Dual electrode micro-channel flow cell for redox titrations: Kinetics and analysis of homogeneous ascorbic acid oxidation [J]. Journal of Electroanalytical Chemistry, 2013, 692: 72–79. DOI: https://doi.org/10.1016/j.jelechem.2012.12.014.

    Article  Google Scholar 

  8. LIU **g-**g, CHEN Zhi-tao, TANG Duo-si, et al. Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid [J]. Sensors and Actuators B: Chemical, 2015, 212: 214–219. DOI: https://doi.org/10.1016/j.snb.2015.02.019.

    Article  Google Scholar 

  9. BLAKE M S, JOHNSTON K H, RUSSELL-JONES G J, et al. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots [J]. Analytical Biochemistry, 1984, 136(1): 175–179. DOI: https://doi.org/10.1016/0003-2697(84)90320-8.

    Article  Google Scholar 

  10. LI Guang-li, QI **ao-man, ZHANG Guan-qiao, et al. Low-cost voltammetric sensors for robust determination of toxic Cd(II) and Pb(II) in environment and food based on shuttlelike α-Fe2O3 nanoparticles decorated β-Bi2O3 microspheres [J]. Microchemical Journal, 2022, 179: 107515. DOI: https://doi.org/10.1016/j.microc.2022.107515.

    Article  Google Scholar 

  11. XIA Yong-hui, LI Guang-li, ZHU Yue-fang, et al. Facile preparation of metal-free graphitic-like carbon nitride/graphene oxide composite for simultaneous determination of uric acid and dopamine [J]. Microchemical Journal, 2023, 190: 108726. DOI: https://doi.org/10.1016/j.microc.2023.108726.

    Article  Google Scholar 

  12. LI Guang-li, LIU Ying, CHEN Yu-wei, et al. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces [J]. Journal of Neural Engineering, 2023, 20(2): 026017. DOI: https://doi.org/10.1088/1741-2552/acc098.

    Article  Google Scholar 

  13. LI Guang-li, QI **ao-man, WU **g-tao, et al. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite [J]. Journal of Hazardous Materials, 2022, 436: 129107. DOI: https://doi.org/10.1016/j.jhazmat.2022.129107.

    Article  Google Scholar 

  14. LI Guang-li, WU **g-tao, QI **ao-man, et al. Molecularly imprinted polypyrrole film-coated poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate-functionalized black phosphorene for the selective and robust detection of norfloxacin [J]. Materials Today Chemistry, 2022, 26: 101043. DOI: https://doi.org/10.1016/j.mtchem.2022.101043.

    Article  Google Scholar 

  15. DHARA K, DEBIPROSAD R M. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection [J]. Analytical Biochemistry, 2019, 586: 113415. DOI: https://doi.org/10.1016/j.ab.2019.113415.

    Article  Google Scholar 

  16. IRANMANESH T, FOROUGHI M M, JAHANI S, et al. Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen [J]. Talanta, 2020, 207: 120318. DOI: https://doi.org/10.1016/j.talanta.2019.120318.

    Article  Google Scholar 

  17. PATELLA B, SORTINO A, MAZZARA F, et al. Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs based electrodes [J]. Analytica Chimica Acta, 2021, 1187: 339124. DOI: https://doi.org/10.1016/j.aca.2021.339124.

    Article  Google Scholar 

  18. SILAH H, ERKMEN C, DEMIR E, et al. Modified indium tin oxide electrodes: Electrochemical applications in pharmaceutical, biological, environmental and food analysis [J]. TrAC Trends in Analytical Chemistry, 2021, 141: 116289. DOI: https://doi.org/10.1016/j.trac.2021.116289.

    Article  Google Scholar 

  19. ZHANG Li-li, YANG Yan-wei. Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining a cylindrical cavity confinement and Aunanoparticles action [J]. Optik, 2020, 220: 165129. DOI: https://doi.org/10.1016/j.ijleo.2020.165129.

    Article  Google Scholar 

  20. POLITANO A, CHIARELLO G. The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the dam** of plasmonic modes in Ag and Au thin films [J]. Progress in Surface Science, 2015, 90(2): 144–193. DOI: https://doi.org/10.1016/j.progsurf.2014.12.002.

    Article  Google Scholar 

  21. YUE **ao-yu, YANG Wen-xiu, XU Miao, et al. High performance of electrocatalytic oxidation and determination of hydrazine based on Pt nanoparticles/TiO2 nanosheets [J]. Talanta, 2015, 144: 1296–1300. DOI: https://doi.org/10.1016/j.talanta.2015.08.002.

    Article  Google Scholar 

  22. YAN Jun, LIU Shi, ZHANG Zhen-qin, et al. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles [J]. Colloids and Surfaces B: Biointerfaces, 2013, 111: 392–397. DOI: https://doi.org/10.1016/j.colsurfb.2013.06.030.

    Article  Google Scholar 

  23. TAUSTER S J, FUNG S C, BAKER R T, et al. Strong interactions in supported-metal catalysts [J]. Science, 1981, 211(4487): 1121–1125. DOI: https://doi.org/10.1126/science.211.4487.1121.

    Article  Google Scholar 

  24. CUI Ai-lin, REN Peng-wei, BAI Yang, et al. Nanoparticle size effect of Pt and TiO2 anatase/rutile phases “volcano-type” curve for HOR electrocatalytic activity at Pt/TiO2-CNx nanocatalysts [J]. Applied Surface Science, 2022, 584: 152644. DOI: https://doi.org/10.1016/j.apsusc.2022.152644.

    Article  Google Scholar 

  25. JAYARAMAN S, JARAMILLO T F, BAECK S H, et al. Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells [J]. The Journal of Physical Chemistry B, 2005, 109(48): 22958–22966. DOI: https://doi.org/10.1021/jp053053h.

    Article  Google Scholar 

  26. LEI Y, MEHMOOD F, LEE S, et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects [J]. Science, 2010, 328(5975): 224–228. DOI: https://doi.org/10.1126/science.1185200.

    Article  Google Scholar 

  27. CHEN C L, LEE J G, ARAKAWA K, et al. Comparative study on size dependence of melting temperatures of pure metal and alloy nanoparticles [J]. Applied Physics Letters, 2011, 99(1): 013108. DOI: https://doi.org/10.1063/1.3607957.

    Article  Google Scholar 

  28. LEE K B, LEE S M, CHEON J. Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration [J]. Advanced Materials, 2001, 13(7): 517–520. DOI: https://doi.org/10.1002/1521-4095(200104)13:7<517:aid-adma517>3.3.co;2-#.

    Article  Google Scholar 

  29. AN K, SOMORJAI G A. Size and shape control of metal nanoparticles for reaction selectivity in catalysis [J]. Chem Cat Chem, 2012, 4(10): 1512–1524. DOI: https://doi.org/10.1002/cctc.201200229.

    Google Scholar 

  30. TAHAY P, KHANI Y, JABARI M, et al. Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation [J]. Applied Catalysis A: General, 2018, 554: 44–53. DOI: https://doi.org/10.1016/j.apcata.2018.01.022.

    Article  Google Scholar 

  31. SUI Xu-lei, WANG Zhen-bo, LI Cun-zhi, et al. Effect of core/shell structured TiO2@C nanowire support on the Pt catalytic performance for methanol electrooxidation [J]. Catalysis Science & Technology, 2016, 6(11): 3767–3775. DOI: https://doi.org/10.1039/C5CY02188J.

    Article  Google Scholar 

  32. HERZING A A, KIELY C J, CARLEY A F, et al. Identification of active gold nanoclusters on iron oxide supports for CO oxidation [J]. Science, 2008, 321(5894): 1331–1335. DOI: https://doi.org/10.1126/science.1159639.

    Article  Google Scholar 

  33. SUBHAN F, ASLAM S, YAN Zi-feng, et al. Confinement of Au, Pd and Pt nanoparticle with reduced sizes: Significant improvement of dispersion degree and catalytic activity [J]. Microporous and Mesoporous Materials, 2022, 337: 111927. DOI: https://doi.org/10.1016/j.micromeso.2022.111927.

    Article  Google Scholar 

  34. ENCARNACIÓN-GÓMEZ C, CORTÉS-JÁCOME M A, MEDINA-MENDOZA A K, et al. Uniformly sized Pt nanoparticles dispersed at high loading on Titania nanotubes [J]. Applied Catalysis A: General, 2020, 600: 117631. DOI: https://doi.org/10.1016/j.apcata.2020.117631.

    Article  Google Scholar 

  35. SHI Yi-jun, WANG Jia-lu, ZHOU Ren-xian. Pt-support interaction and nanoparticle size effect in Pt/CeO2-TiO2 catalysts for low temperature VOCs removal [J]. Chemosphere, 2021, 265: 129127. DOI: https://doi.org/10.1016/j.chemosphere.2020.129127.

    Article  Google Scholar 

  36. DENG Li-dan, WANG Jia-wei, WU Zai-kun, et al. Effects of second metals (M = Fe, Cu, Ga, In, Sn) on the geometric and electronic properties of platinum for the direct dehydrogenation of propane [J]. Journal of Alloys and Compounds, 2022, 909: 164820. DOI: https://doi.org/10.1016/j.jallcom.2022.164820.

    Article  Google Scholar 

  37. DU Yu-bing, WANG Nan, LI **ang-nan, et al. A facile synthesis of C3N4-modified TiO2 nanotube embedded Pt nanoparticles for photocatalytic water splitting [J]. Research on Chemical Intermediates, 2021, 47(12): 5175–5188. DOI: https://doi.org/10.1007/s11164-021-04571-y.

    Article  Google Scholar 

  38. LI Yong-ting, ZHANG Shi-hao, ZHENG Guang-**, et al. Ultrafine Ru nanoparticles anchored to porous g-C3N4 as efficient catalysts for ammonia borane hydrolysis [J]. Applied Catalysis A: General, 2020, 595: 117511. DOI: https://doi.org/10.1016/j.apcata.2020.117511.

    Article  Google Scholar 

  39. FÓTI G, MOUSTY C, NOVY K, et al. Pt/Ti electrode preparation methods: Application to the electrooxidation of isopropanol [J]. Journal of Applied Electrochemistry, 2000, 30(2): 147–151. DOI: https://doi.org/10.1023/A:1003928608596.

    Article  Google Scholar 

  40. YU E H, SCOTT K. Direct methanol alkaline fuel cell with catalysed metal mesh anodes [J]. Electrochemistry Communications, 2004, 6(4): 361–365. DOI: https://doi.org/10.1016/j.elecom.2004.02.002.

    Article  Google Scholar 

  41. DU **g-wei, ZHAO Yi-rong, ZHANG Ze-min, et al. High-performance pseudocapacitive micro-supercapacitors with three-dimensional current collector of vertical ITO nanowire arrays [J]. Journal of Materials Chemistry A, 2019, 7(11): 6220–6227. DOI: https://doi.org/10.1039/C9TA00364A.

    Article  Google Scholar 

  42. SUN Li-da, HUANG Du-shu, LIU Wei, et al. Study on preparation process of ITO nano-powder by the method of ammonia complexation [J]. Advanced Materials Research, 2012, 549: 441–444. DOI: https://doi.org/10.4028/www.scientific.net/amr.549.441.

    Article  Google Scholar 

  43. THØGERSEN A, REIN M, MONAKHOV E, et al. Elemental distribution and oxygen deficiency of magnetron sputtered indium tin oxide films [J]. Journal of Applied Physics, 2011, 109(11): 113532. DOI: https://doi.org/10.1063/1.3587174.

    Article  Google Scholar 

  44. de CARVALHO C N, do REGO A B, AMARAL A, et al. Effect of substrate temperature on the surface structure, composition and morphology of indium-tin oxide films [J]. Surface and Coatings Technology, 2000, 124(1): 70–75. DOI: https://doi.org/10.1016/S0257-8972(99)00619-2.

    Article  Google Scholar 

  45. OKO D N, GARBARINO S, ZHANG Jian-ming, et al. Dopamine and ascorbic acid electro-oxidation on Au, AuPt and Pt nanoparticles prepared by pulse laser ablation in water [J]. Electrochimica Acta, 2015, 159: 174–183. DOI: https://doi.org/10.1016/j.electacta.2015.01.192.

    Article  Google Scholar 

  46. OSIAL M, WARCZAK M, KULESZA P J, et al. Hybrid polyindole-gold nanobrush for electrochemical oxidation of ascorbic acid [J]. Journal of Electroanalytical Chemistry, 2020, 877: 114664. DOI: https://doi.org/10.1016/j.jelechem.2020.114664.

    Article  Google Scholar 

  47. DAI Meng-jiao, ZHU Qun-yan, HAN Dong-xue, et al. Sensitive and selective electrochemical sensor for the detection of dopamine by using AuPd@Fe2O3 nanoparticles as catalyst [J]. Advanced Sensor and Energy Materials, 2023, 2(1): 100048. DOI: https://doi.org/10.1016/j.asems.2023.100048.

    Article  Google Scholar 

  48. CLIMENT M A, RODES A, VALLS M J, et al. Voltammetric and subtractively normalized interfacial FTIR study of the adsorption and oxidation of L(+)-ascorbic acid on Pt electrodes in acid medium: Effect of Bi adatoms [J]. Journal of the Chemical Society, Faraday Transactions, 1994, 90(4): 609–615. DOI: https://doi.org/10.1039/FT9949000609.

    Article  Google Scholar 

  49. MATSOSO B J, MUTUMA B K, BILLING C, et al. The effect of N-configurations on selective detection of dopamine in the presence of uric and ascorbic acids using surfactant-free N-graphene modified ITO electrodes [J]. Electrochimica Acta, 2018, 286: 29–38. DOI: https://doi.org/10.1016/j.electacta.2018.08.017.

    Article  Google Scholar 

  50. KIM B K, LEE J Y, PARK J H, et al. Electrochemical detection of dopamine using a bare indium-tin oxide electrode and scan rate control [J]. Journal of Electroanalytical Chemistry, 2013, 708: 7–12. DOI: https://doi.org/10.1016/j.jelechem.2013.09.001.

    Article  Google Scholar 

  51. ALDANA-GONZÁLEZ J, PALOMAR-PARDAVÉ M, CORONA-AVENDAÑO S, et al. Gold nanoparticles modified-ITO electrode for the selective electrochemical quantification of dopamine in the presence of uric and ascorbic acids [J]. Journal of Electroanalytical Chemistry, 2013, 706: 69–75. DOI: https://doi.org/10.1016/j.jelechem.2013.07.037.

    Article  Google Scholar 

  52. OH D E, LEE C S, KIM T H. Simultaneous and individual determination of seven biochemical species using a glassy carbon electrode modified with a nanocomposite of Pt nanoparticle and graphene by a one-step electrochemical process [J]. Talanta, 2022, 247: 123590. DOI: https://doi.org/10.1016/j.talanta.2022.123590.

    Article  Google Scholar 

  53. THIAGARAJAN S, CHEN Shen-ming. Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid [J]. Talanta, 2007, 74(2): 212–222. DOI: https://doi.org/10.1016/j.talanta.2007.05.049.

    Article  Google Scholar 

  54. MA Ya, ZHANG Yun-long, WANG Li-shi. An electrochemical sensor based on the modification of platinum nanoparticles and ZIF-8 membrane for the detection of ascorbic acid [J]. Talanta, 2021, 226: 122105. DOI: https://doi.org/10.1016/j.talanta.2021.122105.

    Article  Google Scholar 

  55. ATTA N F, EL-KADY M F, GALAL A. Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor [J]. Analytical Biochemistry, 2010, 400(1): 78–88. DOI: https://doi.org/10.1016/j.ab.2010.01.001.

    Article  Google Scholar 

  56. XU Tian-qi, ZHANG Qian-li, ZHENG Jie-ning, et al. Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide [J]. Electrochimica Acta, 2014, 115: 109–115. DOI: https://doi.org/10.1016/j.electacta.2013.10.147.

    Article  Google Scholar 

  57. HUANG Jian-she, LIU Yang, HOU Hao-qing, et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode [J]. Biosensors and Bioelectronics, 2008, 24(4): 632–637. DOI: https://doi.org/10.1016/j.bios.2008.06.011.

    Article  Google Scholar 

  58. YANG Han, ZHAO Jie, QIU Mei-jia, et al. Hierarchical bi-continuous Pt decorated nanoporous Au-Sn alloy on carbon fiber paper for ascorbic acid, dopamine and uric acid simultaneous sensing [J]. Biosensors and Bioelectronics, 2019, 124–125: 191–198. DOI: https://doi.org/10.1016/j.bios.2018.10.012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SUO Jun, JIAO Ke-xin: Data curation, investigation, formal analysis, writing–original draft. FANG Dong: Conceptualization, investigation, writing–review & editing, supervision, resources. RUZIMURADOV Olim: Conceptualization, investigation, writing–review & editing. YI Jian-hong: Conceptualization, investigation, writing-review & editing.

Corresponding author

Correspondence to Dong Fang  (方东).

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Foundation item: Project supported by the Key Special Projects of the Ministry of Science and Technology (China: 2021YFE0104300 and Uzbekistan: MUK-2021-45); Project(202302AH360001) supported by the Science Research Project of Yunnan Province, China; Project (2021P4FZG09A) supported by the Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, J., Jiao, Kx., Yi, Jh. et al. Pt nanoparticles on ITO nanowires for electrochemical detection of L-ascorbic acid and dopamine. J. Cent. South Univ. 31, 747–761 (2024). https://doi.org/10.1007/s11771-024-5590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5590-y

Key words

关键词

Navigation