Log in

A multilayered microwave absorbing composite structure enhanced by fiberglass enforced epoxy laminate array

玻璃纤维板阵列增多层吸波复合结构

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A multilayered composite structure with ultra-wideband and strong microwave absorbing performance has been developed, which is prepared through vacuum bag molding process, and the fiberglass enforced epoxy laminate (FEPL) array on its surface is fabricated by computer numerical control (CNC) carving method. The surface density of the whole composite structure with FEPL array is about 2.4 kg/m2, and the thickness is about 10.0 mm. Both simulation and measurement results confirm that FEPL array can considerably improve stability of the incidence angle, increase absorptivity, and broaden the absorption bandwidth. The FEPL array enhances the oblique incidence performance of the composite structure ranging from 40° to 60°, while simultaneously expanding the fractional bandwidth (FBW) by approximately 9.1%. Moreover, it achieves a notable reduction in the average reflection coefficient at normal incidence, decreasing it by about 11.3 dB from −14.4 dB to − 25.7 dB. High performance and simple preparation processes for composite structure indicate that it is suitable for practical engineering applications.

摘要

本文将电路模拟吸波阵列与玻璃纤维介质板(FEPL)阵列结合,采用真空热压成型工艺制备了一 种具有超宽带**吸波性能的多层复合结构。整个FEPL 阵列复合结构的表面密度约为2.4 kg/m2,厚度 约为10.0 mm。仿真和测量结果均表明,FEPL阵列可以明显改善吸波结构的斜入射角的稳定性,提高 电磁吸收率,拓宽吸收带宽。在斜入射角40°~60°范围内,FEPL阵列显著提高了吸波复合结构的吸收 性能,同时将相对带宽(FBW)拓宽了约9.1%;此外,它还将复合吸波结构**入射角的**均反射系数从 −14.4 dB降低到了−25.7 dB,降低了约11.3 dB。本文所提出的玻璃纤维板阵列增多层吸波复合结构性 能优异,制备工艺简单,适合实际工程应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. TIRKEY M M, GUPTA N. A Novel ultrathin checkerboard inspired ultrawideband metasurface absorber [J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(1): 66–74. DOI: https://ieeexplore.ieee.org/document/9502941.

    Article  Google Scholar 

  2. XU Shi-lang, WANG **ao-ran, LI Qing-hua. Research on the electromagnetic wave absorbing properties of carbon nanotube-fiber reinforced cementitious composite [J]. Composite Structures, 2021, 274: 114377. DOI: https://doi.org/10.1016/j.compstruct.2021.114377.

    Article  Google Scholar 

  3. HANNAN S, ISLAM M T, SOLIMAN M S, et al. A filling-factor engineered, perfect metamaterial absorber for multiple applications at frequencies set by IEEE in C and X bands [J]. Journal of Materials Research and Technology, 2022, 19: 934–946. DOI: https://doi.org/10.1016/j.jmrt.2022.05.071.

    Article  Google Scholar 

  4. LI Yue, GU Peng-fei, HE Zi, et al. An ultra-wideband multilayer absorber using an equivalent circuit-based approach [J]. IEEE Transactions on Antennas and Propagation, 2022, 70(12): 11911–11921. DOI: https://ieeexplore.ieee.org/document/9925138.

    Article  Google Scholar 

  5. ZHU Chun-ling, ZHANG Mi-lin, QIAO Ying-jie, et al. Fe3O4/TiO2 core/shell nanotubes: Synthesis and magnetic and electromagnetic wave absorption characteristics [J]. The Journal of Physical Chemistry C, 2010, 114: 16229–16235. DOI: https://doi.org/10.1021/jp104445m.

    Article  Google Scholar 

  6. GAO Sai, ZHANG Guo-zheng, WANG Yi, et al. MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption [J]. Journal of Materials Science & Technology, 2021, 88: 56–65. DOI: https://doi.org/10.1016/j.jmst.2021.02.011.

    Article  Google Scholar 

  7. WANG Guang-sheng, WU Ying-ying, ZHANG **ao-juan, et al. Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties [J]. Journal of Materials Chemistry A, 2014, 2(23): 8644–8651. DOI: https://doi.org/10.1039/C4TA00485J.

    Article  Google Scholar 

  8. LAKSHMI K, JOHN H, MATHEW K T, et al. Microwave absorption, reflection and EMI shielding of PU-PANI composite [J]. Acta Materialia, 2009, 57(2): 371–375. DOI: https://doi.org/10.1016/j.actamat.2008.09.018.

    Article  Google Scholar 

  9. YANG Zhao-ning, LUO Fa, ZHOU Wan-cheng, et al. Design of a broadband electromagnetic absorbers based on TiO2/Al2O3 ceramic coatings with metamaterial surfaces [J]. Journal of Alloys and Compounds, 2016, 687: 384–388. DOI: https://doi.org/10.1016/j.jallcom.2016.06.166.

    Article  Google Scholar 

  10. MUNK B. Frequency selective surfaces: Theory and design [M]. New York, Wiley, 2000. DOI: https://doi.org/10.1002/0471723770.

    Book  Google Scholar 

  11. TAYDE Y, SAIKIA M, SRIVASTAVA K V, et al. Polarization-insensitive broadband multilayered absorber using screen printed patterns of resistive ink [J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2489–2493. DOI: https://ieeexplore.ieee.org/document/8520796.

    Article  Google Scholar 

  12. YAO Zhi-xin, XIAO Shao-qiu, LI Yan, et al. On the design of wideband absorber based on multilayer and multiresonant FSS array [J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(3): 284–288. DOI: https://ieeexplore.ieee.org/document/9300152.

    Article  Google Scholar 

  13. WANG Qiang, ZHANG Fen, XIONG Yi-jun, et al. Dualband binary metamaterial absorber based on low-permittivity all-dielectric resonance surface [J]. Journal of Electronic Materials, 2019, 48: 787. DOI: https://doi.org/10.1007/s11664-018-6796-2.

    Article  Google Scholar 

  14. ZHANG Fen, WANG Qiang, ZHOU Tian, et al. A multiband binary radar absorbing metamaterial based on a 3D low-permittivity all-dielectric structure [J]. Journal of Alloys and Compounds, 2020, 814: 152300. DOI: https://doi.org/10.1016/j.jallcom.2019.152300.

    Article  Google Scholar 

  15. SIMOVSKI C, MASLOVSKI S, NEFEDOV I, et al. Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications [J]. Optics Express, 2013, 21(12): 14988–15013. DOI: https://doi.org/10.1364/OE.21.014988.

    Article  Google Scholar 

  16. SMITH D R, VIER D C, KOSCHNY T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials [J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 71: 036617. DOI: https://doi.org/10.1103/physreve.71.036617.

    Article  Google Scholar 

  17. LIN Meng-lan, YI Jian-jia, CHEN **ao-ming, et al. Compact multi-functional frequency-selective absorber based on customizable impedance films [J]. Optics Express, 2021, 29(10): 14974–14984. DOI: https://doi.org/10.1364/OE.422071.

    Article  Google Scholar 

  18. MA Zhe-yi-pei, JIANG Chao, CAO Wen-bo, et al. An ultrawideband and high-absorption circuit-analog absorber with incident angle-insensitive performance [J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9376–9384. https://ieeexplore.ieee.org/document/9785419.

    Article  Google Scholar 

  19. ZHANG Hao-yan, GONG Lei, YAN Liang, et al. Design of double-layer absorbers based on CO2Y@C core-shell nanofibers and carbon nanofibers for high-efficient and tunable microwave absorption [J]. Journal of Magnetism and Magnetic Materials, 2023, 569: 170394. DOI: https://doi.org/10.1016/j.jmmm.2023.170394.

    Article  Google Scholar 

  20. ASHFAQ M Z, ASHFAQ A, GONG Hong-yu, et al. Controllable synthesis of FeSe2/rGO porous composites towards an excellent electromagnetic wave absorption with broadened bandwidth [J]. Ceramics International, 2023, 49(4): 5997–6005. DOI: https://doi.org/10.1016/j.ceramint.2022.10.140.

    Article  Google Scholar 

  21. CHEN Hao-na, LIU **-rong, XIAO Li-hua, et al. All-dielectric absorbing array based on 3D printing metamaterial [J]. Optical and Quantum Electronics, 2023, 55(6): 561. DOI: https://doi.org/10.1007/s11082-023-04859-w.

    Article  Google Scholar 

  22. PARAMESWARAN A, OVHAL A A, KUNDU D, et al. A low-profile ultra-wideband absorber using lumped resistor-loaded cross dipoles with resonant nodes [J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1758–1766. DOI: https://doi.org/10.1109/TEMC.2022.3196406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MA Zhe-yi-pei made substantial contributions to conception, design, result analysis, preparation, measurement, and revision of the manuscript. Li Jia-le participated in measurement. JIANG Chao supervised the whole research project, helped to update the article, and helped in revising the article.

Corresponding author

Correspondence to Chao Jiang  (姜超).

Ethics declarations

MA Zhe-yi-pei, LI Jia-le, and JIANG Chao declare that they have no conflict of interest.

Additional information

Foundation item: Project(202045002) supported by the Initial Research Funding for Special Associate Professor of Central South University, China; Project(2021RC3003) supported by the Science and Technology Innovation Talents Program of Hunan Province, China; Project(2022-JCJQ-ZD-01-1) supported by the Basic Strengthening Research Sub-project of China; Project(CX 20220163) supported by the Postgraduate Innovation Project of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Zyp., Li, Jl. & Jiang, C. A multilayered microwave absorbing composite structure enhanced by fiberglass enforced epoxy laminate array. J. Cent. South Univ. 31, 384–398 (2024). https://doi.org/10.1007/s11771-023-5528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5528-9

Key words

关键词

Navigation