Log in

Microstructure and bactericidal properties of Cu-MOF, Zr-MOF and Fe-MOF

铜、铁和锆三种金属有机框架的微观结构与抗菌性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Materials derived from metal-organic frameworks (MOFs) have found extensive applications in various antimicrobial uses in recent years. Transition metals have undergone extensive research due to their exceptional efficiency, low toxicity, and affordability. In this paper, three typical transition metal MOFs, copper (Cu-MOF), iron (Fe-MOF) and zirconium (Zr-MOF), are characterized in detail microscopically and their antimicrobial properties are systematically compared. The synthesis and microstructure of MOFs were validated using various instruments, such as SEM and PXRD. The investigation into bacterial (E. coli) test results revealed that the bactericidal effects of Cu-MOF, Fe-MOF, and Zr-MOF followed a descending order. Furthermore, the solution containing Cu-MOF displayed zero colonies in the same environment, demonstrating a 100% lethality against E. coli, a result significantly higher than the other two groups. Nevertheless, Fe-MOF and Zr-MOF exhibited an increase in antimicrobial properties of 2.47% and 73.56%, respectively, after exposure to light, both of which still demonstrated outstanding bactericidal effects.

摘要

**年来, 有机金属框架(MOFs)材料在各种抗菌领域得到广泛应用。过渡金属由于其生物相容性 **、毒性弱, 成本低而得到广泛研究。本文对三种典型的过渡金属MOFs, 铜(Cu-MOF)、铁(Fe-MOF) 和锆(Zr-MOF)的抗菌性能进行系统的比较。使用SEM和PXRD等仪器对MOFs的合成和微观结构进行 验证和表征。对细菌(大肠杆菌)的试验结果表明, Cu-MOF、Fe-MOF和Zr-MOF的杀菌效果依次减弱。 在相同的环境中, 含有Cu-MOF的溶液中菌落数为0, 表示了对大肠杆菌为100%的致死率, 这一结果 显著高于其他两组。但是暴露于光照后, Fe-MOF和Zr-MOF的抗菌性能分别提高了2.47%和73.56%, 同样表现出优异的杀菌效果。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. DAVIS M E. Ordered porous materials for emerging applications [J]. Nature, 2002, 417(6891): 813–821. DOI: https://doi.org/10.1038/nature00785.

    Article  Google Scholar 

  2. TIAN Yu-yang, ZHU Guang-shan. Porous aromatic frameworks (PAFs) [J]. Chemical Reviews, 2020, 120(16): 8934–8986. DOI: https://doi.org/10.1021/acs.chemrev.9b00687.

    Article  Google Scholar 

  3. FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks [J]. Science, 2013, 341: 1230444. DOI: https://doi.org/10.1126/science.1230444.

    Article  Google Scholar 

  4. GENG Ke-yu, HE Ting, LIU Ruo-yang, et al. Covalent organic frameworks: Design, synthesis, and functions [J]. Chemical Reviews, 2020, 120(16): 8814–8933. DOI: https://doi.org/10.1021/acs.chemrev.9b00550.

    Article  Google Scholar 

  5. DONG **-qiao, TAN Chun-xia, ZHANG Kang, et al. Chiral NH-controlled supramolecular metallacycles [J]. Journal of the American Chemical Society, 2017, 139(4): 1554–1564. DOI: https://doi.org/10.1021/jacs.6b11422.

    Article  Google Scholar 

  6. YAGHI O M, LI Guang-ming, LI Hai-lian. Selective binding and removal of guests in a microporous metal-organic framework [J]. Nature, 1995, 378(6558): 703–706. DOI: https://doi.org/10.1038/378703a0.

    Article  Google Scholar 

  7. ROWSELL J L C, YAGHI O M. Metal-organic frameworks: A new class of porous materials [J]. Microporous and Mesoporous Materials, 2004, 73(1–2): 3–14. DOI: https://doi.org/10.1016/j.micromeso.2004.03.034.

    Article  Google Scholar 

  8. SAFAEI M, FOROUGHI M M, EBRAHIMPOOR N, et al. A review on metal-organic frameworks: Synthesis and applications [J]. TrAC Trends in Analytical Chemistry, 2019, 118: 401–425. DOI: https://doi.org/10.1016/j.trac.2019.06.007.

    Article  Google Scholar 

  9. CHAKRABORTY G, PARK I H, MEDISHETTY R, et al. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications [J]. Chemical Reviews, 2021, 121(7): 3751–3891. DOI: https://doi.org/10.1021/acs.chemrev.0c01049.

    Article  Google Scholar 

  10. WANG **g, LIU Wei, LUO Gan, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction [J]. Energy & Environmental Science, 2018, 11(12): 3375–3379. DOI: https://doi.org/10.1039/c8ee02656d.

    Article  Google Scholar 

  11. WANG Yang, LV Hao, GRAPE E S, et al. A tunable multivariate metal - organic framework as a platform for designing photocatalysts [J]. Journal of the American Chemical Society, 2021, 143(17): 6333–6338. DOI: https://doi.org/10.1021/jacs.1c01764.

    Article  Google Scholar 

  12. WANG Kai-min, DU Lin, MA Yu-lu, et al. Multifunctional chemical sensors and luminescent thermometers based on lanthanide metal-organic framework materials [J]. Cryst Eng Comm, 2016, 18(15): 2690–2700. DOI: https://doi.org/10.1039/c5ce02367j.

    Article  Google Scholar 

  13. MELVIN A C, REYNOLDS M M. Systematic exploration of a catalytic metal-organic framework/polyurethane composite for medical device applications: Effects of MOF particle size, MOF loading, and polymer concentration on composite material activity [J]. Frontiers in Physics, 2022, 10: 880841. DOI: https://doi.org/10.3389/fphy.2022.880841.

    Article  Google Scholar 

  14. ZUO Ya-nan, ZHAO **a-nen, XIA Ying-hui, et al. Ratiometric fluorescence sensing formaldehyde in food samples based on bifunctional MOF [J]. SSRN Electronic Journal, 2022, 191(1): 36. DOI: https://doi.org/10.2139/ssrn.4132036.

    Google Scholar 

  15. GRENNI P, ANCONA V, BARRA CARACCIOLO A. Ecological effects of antibiotics on natural ecosystems: A review [J]. Microchemical Journal, 2018, 136: 25–39. DOI: https://doi.org/10.1016/j.microc.2017.02.006.

    Article  Google Scholar 

  16. LIU J, CHAMAKURA K, PEREZ-BALLESTERO R, et al. Historical overview of the first two waves of bactericidal agents and development of the third wave of potent disinfectants [M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2012: 129–154. DOI: https://doi.org/10.1021/bk-2012-1119.ch006.

    Google Scholar 

  17. SANTO C E, QUARANTA D, GRASS G. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage [J]. Microbiology Open, 2012, 1(1): 46–52. DOI: https://doi.org/10.1002/mbo3.2.

    Article  Google Scholar 

  18. CHERNOUSOVA S, EPPLE M. Silver as antibacterial agent: Ion, nanoparticle, and metal [J]. Chem Inform, 2013, 52(6): 1636–1653. DOI: https://doi.org/10.1002/chin.201324233.

    Google Scholar 

  19. PETTINARI C, PETTINARI R, DI NICOLA C, et al. Antimicrobial MOFs [J]. Coordination Chemistry Reviews, 2021, 446: 214121. DOI: https://doi.org/10.1016/j.ccr.2021.214121.

    Article  Google Scholar 

  20. FREUND R, LÄCHELT U, GRUBER T, et al. Multifunctional efficiency: Extending the concept of atom economy to functional nanomaterials [J]. ACS Nano, 2018, 12(3): 2094–2105. DOI: https://doi.org/10.1021/acsnano.8b00932.

    Article  Google Scholar 

  21. ONG K S, CHEOW Y L, LEE S M. The role of reactive oxygen species in the antimicrobial activity of pyochelin [J]. Journal of Advanced Research, 2017, 8(4): 393–398. DOI: https://doi.org/10.1016/j.jare.2017.05.007.

    Article  Google Scholar 

  22. WUTTKE S, LISMONT M, ESCUDERO A, et al. Positioning metal-organic framework nanoparticles within the context of drug delivery—A comparison with mesoporous silica nanoparticles and dendrimers [J]. Biomaterials, 2017, 123: 172–183. DOI: https://doi.org/10.1016/j.biomaterials.2017.01.025.

    Article  Google Scholar 

  23. ANSARI-ASL Z, SHAHVALI Z, SACOURBARAVI R, et al. Cu(II) metal-organic framework@Polydimethylsiloxane nanocomposite sponges coated by chitosan for antibacterial and tissue engineering applications [J]. Microporous and Mesoporous Materials, 2022, 336: 111866. DOI: https://doi.org/10.1016/j.micromeso.2022.111866.

    Article  Google Scholar 

  24. ZHANG P R, XU X M, HE W M, et al. Autocatalytically hydroxyl-producing composite wound dressing for bacteria-infected wound healing [J]. Nanomedicine, 2023, 51: 102683. DOI: https://doi.org/10.1016/j.nano.2023.102683.

    Article  Google Scholar 

  25. LIU M, WANG L, ZHENG X H, et al. Zirconium-based nanoscale metal-organic framework/poly(epsilon-caprolactone) mixed-matrix membranes as effective antimicrobials [J]. ACS Appl Mater Interfaces, 2017, 9(47): 41512–41520. DOI: https://doi.org/10.1021/acsami.7b15826.

    Article  Google Scholar 

  26. CHEN Yue-ying, ZHANG Yu-ze, HUANG Qian-hong, et al. Recent advances in Cu-based metal-organic frameworks and their derivatives for battery applications [J]. ACS Applied Energy Materials, 2022, 5(6): 7842–7873. DOI: https://doi.org/10.1021/acsaem.2c01405.

    Article  Google Scholar 

  27. LI Lin-nan, MA Wen, SHEN Sen-sen, et al. A combined experimental and theoretical study on the extraction of uranium by amino-derived metal-organic frameworks through post-synthetic strategy [J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31032–31041. DOI: https://doi.org/10.1021/acsami.6b11332.

    Article  Google Scholar 

  28. FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area [J]. Science, 2005, 309(5743): 2040–2042. DOI: https://doi.org/10.1126/science.1116275.

    Article  Google Scholar 

  29. KATZ M J, BROWN Z J, COLÓN Y J, et al. A facile synthesis of UiO-66, UiO-67 and their derivatives [J]. Chemical Communications, 2013, 49(82): 9449. DOI: https://doi.org/10.1039/c3cc46105j.

    Article  Google Scholar 

  30. LIU Ke-ke, CHEN Ya-nan, DONG Xue-liang, et al. Simultaneous voltammetric determination of dopamine and uric acid based on MOF-235 nanocomposite [J]. Inorganic Chemistry Communications, 2022, 142: 109584. DOI: https://doi.org/10.1016/j.inoche.2022.109584.

    Article  Google Scholar 

  31. WARDZALA J J, RUFFLEY J P, GOODENOUGH I, et al. Modeling of diffusion of acetone in UiO-66 [J]. The Journal of Physical Chemistry C, 2020, 124(52): 28469–28478. DOI: https://doi.org/10.1021/acs.jpcc.0c07040.

    Article  Google Scholar 

  32. LI Hua-li, LUO Shu-wen, ZHANG Liu-qin, et al. Water- and acid-sensitive Cu2O@Cu-MOF nano sustained-release capsules with superior antifouling behaviors [J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1910–1920. DOI: https://doi.org/10.1021/acsami.1c18288.

    Article  Google Scholar 

  33. ZHAO Zi-long, JIANG **ao-wei, LI Si-rui, et al. Microstructure characterization and battery performance comparison of MOF-235 and TiO2-P25 materials [J]. Crystals, 2022, 12(2): 152. DOI: https://doi.org/10.3390/cryst12020152.

    Article  Google Scholar 

  34. LI Jiao, WANG Li-yan, BAI Huan-huan, et al. Development of an eco-friendly waterborne polyurethane/catecholamine/sol-gel composite coating for achieving long-lasting corrosion protection on Mg alloy AZ31 [J]. Progress in Organic Coatings, 2023, 183: 107732. DOI: https://doi.org/10.1016/j.porgcoat.2023.107732.

    Article  Google Scholar 

  35. KAUR R, KAUR A, UMAR A, et al. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: Synthesis, properties and enhanced adsorption properties [J]. Materials Research Bulletin, 2019, 109: 124–133. DOI: https://doi.org/10.1016/j.materresbull.2018.07.025.

    Article  Google Scholar 

  36. GOMES R, BHANJA P, BHAUMIK A. A triazine-based covalent organic polymer for efficient CO2 adsorption [J]. Chemical Communications, 2015, 51(49): 10050–10053. DOI: https://doi.org/10.1039/c5cc02147b.

    Article  Google Scholar 

  37. SUDIK A C, CÔTÉ A P, YAGHI O M. Metal-organic frameworks based on trigonal prismatic building blocks and the new “ACS” topology [J]. Inorganic Chemistry, 2005, 44(9): 2998–3000. DOI: https://doi.org/10.1021/ic050064g.

    Article  Google Scholar 

  38. DEY D, BANERJEE P. Toxic organic solvent adsorption by a hydrophobic covalent polymer [J]. New Journal of Chemistry, 2019, 43(9): 3769–3777. DOI: https://doi.org/10.1039/c8nj06249h.

    Article  Google Scholar 

  39. DIKIO E D, FARAH A M. Synthesis, characterization and comparative study of copper and zinc metal organic frameworks [J]. Chemical Science Transactions, 2013, 2(4): 1386–1394. DOI: https://doi.org/10.7598/cst2013.520.

    Google Scholar 

  40. LI Ying-wei, YANG R T. Hydrogen storage in metal-organic and covalent-organic frameworks by spillover [J]. AIChE Journal, 2008, 54(1): 269–279. DOI: https://doi.org/10.1002/aic.11362.

    Article  MathSciNet  Google Scholar 

  41. BATISTA L C D, SANTOS T I S, SANTOS J E L, et al. Metal organic framework-235 (MOF-235) modified carbon paste electrode for catechol determination in water [J]. Electroanalysis, 2021, 33(1): 57–65. DOI: https://doi.org/10.1002/elan.201800811.

    Article  Google Scholar 

  42. LAI Huan-sheng, ZHAO Zi-long, YU Wen-he, et al. Physicochemical and antibacterial evaluation of TiO2/CNT mesoporous nanomaterials prepared by high-pressure hydrothermal sol-gel method under an ultrasonic composite environment [J]. Molecules, 2023, 28(7): 3190. DOI: https://doi.org/10.3390/molecules28073190.

    Article  Google Scholar 

  43. LIN Li-sen, HUANG Tao, SONG Ji-bin, et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy [J]. Journal of the American Chemical Society, 2019, 141(25): 9937–9945. DOI: https://doi.org/10.1021/jacs.9b03457.

    Article  Google Scholar 

  44. TAMAMES-TABAR C, IMBULUZQUETA E, GUILLOU N, et al. A Zn azelate MOF: Combining antibacterial effect [J]. Cryst Eng Comm, 2015, 17(2): 456–462. DOI: https://doi.org/10.1039/c4ce00885e.

    Article  Google Scholar 

  45. YANG Mei, ZHANG **, WEI Yin-hao, et al. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection [J]. Nano Research, 2022, 15(7): 6220–6242. DOI: https://doi.org/10.1007/s12274-022-4302-x.

    Article  Google Scholar 

  46. LIU Jiang-hua, WU Di, ZHU Niu, et al. Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials [J]. Trends in Food Science & Technology, 2021, 109: 413–434. DOI: https://doi.org/10.1016/j.tifs.2021.01.012.

    Article  Google Scholar 

  47. DU Xue-dong, YI **ao-hong, WANG Peng, et al. Enhanced photocatalytic Cr(VI) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions [J]. Chinese Journal of Catalysis, 2019, 40(1): 70–79. DOI: https://doi.org/10.1016/S1872-2067(18)63160-2.

    Article  Google Scholar 

  48. FU Yang-jie, ZHANG Ke-jie, ZHANG Yi, et al. Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance [J]. Chemical Engineering Journal, 2021, 412: 128722. DOI: https://doi.org/10.1016/j.cej.2021.128722.

    Article  Google Scholar 

  49. LU You-fu, SHI Nan, WANG Ming-ming, et al. Research on the preparation of graphene quantum dots/SBS composite-modified asphalt and its application performance [J]. Coatings, 2022, 12(4): 515. DOI: https://doi.org/10.3390/coatings12040515.

    Article  Google Scholar 

  50. JO J H, KIM H C, HUH S, et al. Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands [J]. Dalton Transactions, 2019, 48(23): 8084–8093. DOI: https://doi.org/10.1039/c9dt00791a.

    Article  Google Scholar 

  51. LIN Sha, LIU **ang-mei, TAN Lei, et al. Porous iron-carboxylate metal - organic framework: A novel bioplatform with sustained antibacterial efficacy and nontoxicity [J]. ACS Applied Materials & Interfaces, 2017, 9(22): 19248–19257. DOI: https://doi.org/10.1021/acsami.7b04810.

    Article  Google Scholar 

  52. NASRABADI M, ALI GHASEMZADEH M, ZAND MONFARED M R. The preparation and characterization of UiO-66 metal - organic frameworks for the delivery of the drug ciprofloxacin and an evaluation of their antibacterial activities [J]. New Journal of Chemistry, 2019, 43(40): 16033–16040. DOI: https://doi.org/10.1039/c9nj03216a.

    Article  Google Scholar 

  53. YAN Bang-cheng, TAN Ji, ZHANG Hai-feng, et al. Constructing fluorine-doped Zr-MOF films on titanium for antibacteria, anti-inflammation, and osteogenesis [J]. Biomaterials Advances, 2022, 134: 112699. DOI: https://doi.org/10.1016/j.msec.2022.112699.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by ZHAO Zi-long and KANG Fu-yan. SU Yong-** and LIU Fa-qian provided the measured landslides displacement data and analyzed the measured data. HUANG **-zhe analyzed the calculated results. The initial draft of the manuscript was written by KANG Fu-yan. ZHAO Zi-long edited the draft of the manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Zi-long Zhao  (赵子龙) or Fa-qian Liu  (刘法谦).

Ethics declarations

KANG Fu-yan, SU Yong-**, LIU Fa-qian, HUANG **-zhe and ZHAO Zi-long declare that they have no conflict of interest.

Additional information

Foundation item: Project(52073311) supported by the National Natural Science Foundation of China; Project(2021A1515012281) supported by the Guangdong Basic and Applied Basic Research Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Fy., Su, Yj., Huang, Xz. et al. Microstructure and bactericidal properties of Cu-MOF, Zr-MOF and Fe-MOF. J. Cent. South Univ. 30, 3237–3247 (2023). https://doi.org/10.1007/s11771-023-5471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5471-9

Key words

关键词

Navigation