Log in

Deformation microstructure and properties control of Cu-0.6Cr alloy in cryo-equal channel angular pressing

Cu-0.6Cr 合金超低温等通道角挤压形变组织及性能调控

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Cu-0.6Cr alloy was extruded by liquid nitrogen cooling equal channel angular pressing (ECAP) route-Bc and aging treated at 400 °C–500 °C; the structure and orientation distribution of the alloy were detected by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), electron back-scattered diffraction (EBSD) and TEM. The purpose is to detect the influence of deformation conditions and aging treatment on the microstructure and properties of the materials, and to analyzed the microscopic mechanism of the precipitates formation process and transformation. The results show that the cryo-ECAP-Bc deformation will accelerate the interaction between the microstructure and texture of the Cu-0.6Cr alloy, and reduce the limitation size of the grains after deformation. Strain increase can promote increasing the amounts of micro/nano precipitates discontinuous distribution on the grain boundaries. After 4 passes of extrusion and aging at 450 °C, the tensile strength, hardness and elongation of the material reach to 555.0 MPa, HV 167.3 and 13.1%, respectively, and the conductivity exceeds 84%IACS. The synergistic effect of microalloying, solid solution, cryo-ECAP and aging, and the formation of {111} <112> and {111} <110> textures are beneficial to improving the conductivity of the alloy simultaneously.

摘要

对CuCr合金进行液氮冷却ECAP-Bc路径4道次挤压及时效处理(400 °C~500 °C), 采用OM、 SEM、EDS、XRD及EBSD检测合金组织结构和取向演变, 探索变形条件及时效处理对材料组织性能 的影响规律, 分析析出相形成与转变的微观机制。结果表明, 超低温ECAP-Bc变形会加剧Cu-0.6Cr 合 金组织与织构的交互作用, 减小变形后的极限晶粒尺寸, 变形量的增加会促使微/纳析出相数量的增加 且在晶界上不连续分布; 4 道次挤压和450 °C 时效后材料的抗拉**度、硬度和伸长率分别达到 555.0 MPa、HV 167.3 和13.1%, 导电率超过84%IACS。微合金化、固溶、超低温ECAP, 时效协同作 用及{111}<112>和{111} <110> 织构的形成有利于材料导电性能的同步提升。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. XIA Cheng-dong, ZHANG Wan, KANG Zhan-yuan, et al. High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments [J]. Materials Science and Engineering A, 2012, 538: 295–301. DOI: https://doi.org/10.1016/j.msea.2012.01.047.

    Article  Google Scholar 

  2. WANG Tao, WANG Bi-wen. New type copper alloys and their processing technologies [J]. Nonferrous Metals Processing, 2002, 31(4): 15–22, 42. (in Chinese)

    Google Scholar 

  3. HU Hao-qi, XU Cheng, YANG Li-**g, et al. Recent advances in the research of high-strength and high-conductivity CuCrZr alloy [J]. Alloy Mater Rev, 2018, 32: 453–460. (in Chinese)

    Google Scholar 

  4. XIE Chun-sheng, ZHAI Qi-ming, XU Wen-qing, et al. Study and application development of strengthening theory of copper alloy with high strength and high conductivity [J]. Heat Treatment of Metals, 2007, 32(1): 12–20. DOI: https://doi.org/10.13251/j.issn.0254-6051.2007.01.002.

    Google Scholar 

  5. CHEN Guang, PENG Ying-bo, ZHENG Gong, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications [J]. Nature Materials, 2016, 15(8): 876–881. DOI: https://doi.org/10.1038/nmat4677.

    Article  Google Scholar 

  6. HONG M S, PARK I J, KIM J G. Alloying effect of copper concentration on the localized corrosion of aluminum alloy for heat exchanger tube [J]. Metals and Materials International, 2017, 23(4): 708–714. DOI: https://doi.org/10.1007/s12540-017-6589-9.

    Article  Google Scholar 

  7. MARTIENSSEN W. Semiconductors [M]//Handbook of Condensed Matter and Materials Data. Berlin, Heidelberg: Springer, 2006: 575–694. DOI: https://doi.org/10.1007/3-540-30437-1_9.

    Google Scholar 

  8. WANG Y M, MA E. Three strategies to achieve uniform tensile deformation in a nanostructured metal [J]. Acta Materialia, 2004, 52(6): 1699–1709. DOI: https://doi.org/10.1016/j.actamat.2003.12.022.

    Article  Google Scholar 

  9. LU Lei, LU Ke. Metallic materials with nano: Scale twins [J]. Acta Metallurgica Sinica, 2011, 46(11): 1422–1427. DOI: https://doi.org/10.3724/sp.j.1037.2010.01422.

    Article  Google Scholar 

  10. LU Lei, YOU Ze-sheng. Plastic deformation mechanisms in nanotwinned metals [J]. Acta Metallurgica Sinica, 2014, 50(2): 129–136. (in Chinese)

    Google Scholar 

  11. SHEN Y F, LU L, LU Q H, et al. Tensile properties of copper with nano-scale twins [J]. Scripta Materialia, 2005, 52(10): 989–994. DOI: https://doi.org/10.1016/j.scriptamat.2005.01.033.

    Article  Google Scholar 

  12. LU Lei, SHEN Yong-feng, CHEN **an-hua, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304(5669): 422–426. DOI: https://doi.org/10.1126/science.1092905.

    Article  Google Scholar 

  13. AN **ang-hai, WU Shi-ding, ZHANG Zhe-feng. Influnece of stacking fault energy on the microstructures, tensile and fatigue properties of nanostructured Cu-Al alloys [J]. Acta Metallurgica sinica, 2014, 50(2): 191–201. (in Chinese)

    Google Scholar 

  14. SHAHMIR H, ASGHARI-RAD P, MEHRANPOUR M S, et al. Evidence of FCC to HCP and BCC-martensitic transformations in a CoCrFeNiMn high-entropy alloy by severe plastic deformation [J]. Materials Science and Engineering A, 2021, 807: 140875. DOI: https://doi.org/10.1016/j.msea.2021.140875.

    Article  Google Scholar 

  15. LIU X Y, ZHAO X C, YANG X R, et al. Research progress on deformation texture of equal-diameter curved channels [J]. Materials Reports, 2012, 26(17): 127–133.

    Google Scholar 

  16. ZHANG Y M, DING H, XIAO Y Z, et al. Research status and development trend of equal channel angular extrusion [J]. Journal of Materials and Metallurgy, 2002, 1(4): 258–262.

    Google Scholar 

  17. MISHNEV R, SHAKHOVA I, BELYAKOV A, et al. Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu-Cr-Zr alloy [J]. Materials Science and Engineering A, 2015, 629: 29–40. DOI: https://doi.org/10.1016/j.msea.2015.01.065.

    Article  Google Scholar 

  18. SUN L X, TAO N R, LU K. A high strength and high electrical conductivity bulk CuCrZr alloy with nanotwins [J]. Scripta Materialia, 2015, 99: 73–76. DOI: https://doi.org/10.1016/j.scriptamat.2014.11.032.

    Article  Google Scholar 

  19. ZHOU Jia-min, ZHU De-gui, TANG Liu-ting, et al. Microstructure and properties of powder metallurgy Cu-1%Cr-0.65%Zr alloy prepared by hot pressing [J]. Vacuum, 2016, 131: 156–163. DOI: https://doi.org/10.1016/j.vacuum.2016.06.008.

    Article  Google Scholar 

  20. GUO T B, LI Q, WANG C, et al. Texture and mechanical properties of single crystal copper during equal channel angular pressing by route C [J]. Materialwissenschaft Und Werkstofftechnik, 2018, 49(10): 1170–1180. DOI: https://doi.org/10.1002/mawe.201700207.

    Article  Google Scholar 

  21. DING Zong-ye, JIA Shu-guo, NING **ang-mei, et al. Aging properties of high-strength and high-conductivity Cu-Cr-Zr alloy [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(12): 2420–2425. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2017.12.03. (in Chinese)

    Google Scholar 

  22. WANG Qing-juan, ZHOU **ao, LIANG Bo, et al. High temperature tensile properties and fracture mechanism of ultra-fine grain cu-cr-zr alloy [J]. Acta Metallurgica Sinica, 2016, 52(11): 1477–1483. (in Chinese)

    Google Scholar 

  23. BOCHVAR N R, RYBALCHENKO O V, SHANGINA D V, et al. Effect of equal-channel angular pressing on the precipitation kinetics in Cu-Cr-Hf alloys [J]. Materials Science and Engineering A, 2019, 757: 84–87. DOI: https://doi.org/10.1016/j.msea.2019.04.073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GUO Ting-biao developed the overarching research goals and edited the draft of manuscript. QIAN Dan-chen conducted the literature review and wrote the manuscript. HUANG Da-wei validated the proposed method with practical experiments and wrote the first draft of manuscript. LI Kai-zhe edited the manuscript. GAO Yang edited the manuscript. DING Yu-tian edited the manuscript.

Corresponding author

Correspondence to Ting-biao Guo  (郭廷彪).

Ethics declarations

GUO Ting-biao, QIAN Dan-chen, HUANG Da-wei, LI Kai-zhe, GAO Yang, DING Yu-tian declare that they have no conflict of interest.

Additional information

Foundation item: Project(22YF7GA158) supported by the Key Science and Technology Research and Development Program of Gansu Province, China; Projects(51261016, 51861022) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Tb., Qian, Dc., Huang, Dw. et al. Deformation microstructure and properties control of Cu-0.6Cr alloy in cryo-equal channel angular pressing. J. Cent. South Univ. 30, 2094–2106 (2023). https://doi.org/10.1007/s11771-023-5369-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5369-6

Key words

关键词

Navigation