Log in

Release of toxic gases in the process of cemented backfill with phosphorus waste

全磷废料在矿山充填过程中有害气体的释放特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Aiming at the practical problem of toxic gases generated in the process of cemented backfill with phosphorus waste (phosphogypsum as aggregate and yellow phosphorus slag as the binder), sources and dynamics of gas generation and the method of gas inhibition were investigated by monitoring the gas generated in the aggregate, the binder and the cemented slurry stirring process. The main findings proved that the gases were mainly generated from the binder in an acidic circumstance, and the gas generation sequence is PCl3, PH3, NO, H2S, NH3, and CO. Furthermore, lowering the pH value of the cemented slurry would increase the gas yield. The original gas yield of the slurry without acid addition was only 6.3% of the maximum gas yield after acid addition. By analyzing the circumstances of gas generation, a method of directly adding alkaline CaO to the slurry to control the gas generation was proposed. The addition of 12 wt% CaO was noted to reduce the gas yield by 99%. When the pH of the backfill slurry reached 10, the gas generation could be controlled. The results have implications for ensuring the health of mining workers and decreasing environmental pollution.

摘要

针对全磷废料充填过程中产生有害气体的实际问题,通过监测骨料磷石膏(PG)、胶凝剂黄磷渣(YPS)和充填过程中的气体产生情况,探究了气体产生的来源、释放特性以及抑制方法。结果表明,气体主要是在酸性环境下在胶凝剂中产生的,气体产生的先后顺序为PCl3、PH3、NO、H2S、NH3和CO。降低充填浆料的pH值将增加气体产量,未添加酸的浆料原始气体产量仅为外加酸性环境下极限气体产量的6.3%。通过对产气情况的分析,提出了在料浆中直接添加碱性CaO 以控制气体产生的方法。添加胶凝剂质量12%的CaO时,气体产率降低了99%。当充填料浆的pH达到10 以上时,可有效控制气体产生。本研究结果对保障采矿工人的健康和减少环境污染具有一定意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. CHEN Qiu-ju, DING Wen-**, PENG Tong-jiang, et al. Synthesis and characterization of calcium carbonate whisker from yellow phosphorus slag [J]. Open Chemistry, 2020, 18(1): 347–356. DOI: https://doi.org/10.1515/chem-2020-0036.

    Article  Google Scholar 

  2. GU Kang, CHEN Bing. Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction [J]. Construction and Building Materials, 2020, 231: 117195. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117195.

    Article  Google Scholar 

  3. CUADRI A A, NAVARRO F J, GARCÍA-MORALES M, et al. Valorization of phosphogypsum waste as asphaltic bitumen modifier [J]. Journal of Hazardous Materials, 2014, 279: 11–16. DOI: https://doi.org/10.1016/j.jhazmat.2014.06.058.

    Article  Google Scholar 

  4. DEGIRMENCI N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products [J]. Construction and Building Materials, 2008, 22(8): 1857–1862. DOI: https://doi.org/10.1016/j.conbuildmat.2007.04.024.

    Article  Google Scholar 

  5. LI Yi-wei, LUO **ng-hua, LI Chu-xuan, et al. Variation of alkaline characteristics in bauxite residue under phosphogypsum amendment [J]. Journal of Central South University, 2019, 26(2): 361–372. DOI: https://doi.org/10.1007/s11771-019-4008-8.

    Article  Google Scholar 

  6. RASHAD A M. Phosphogypsum as a construction material [J]. Journal of Cleaner Production, 2017, 166: 732–743. DOI: https://doi.org/10.1016/j.jclepro.2017.08.049.

    Article  Google Scholar 

  7. SAHOO P, JOSEPH J. Radioactive hazards in utilization of industrial by-products: Comprehensive review [J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25(3): 03121001. DOI: https://doi.org/10.1061/(asce)hz.2153-5515.0000612.

    Article  Google Scholar 

  8. LIU Hong-pan, MA Li-**, HUANG **ao-feng, et al. Phase transformation of glass-ceramics produced by naturally cooled yellow phosphorus slag during calcination [J]. Journal of Alloys and Compounds, 2017, 712: 510–516. DOI: https://doi.org/10.1016/j.jallcom.2017.04.134.

    Article  Google Scholar 

  9. CHEN Jia-sheng, ZHAO Bin, WANG **n-min, et al. Cemented backfilling performance of yellow phosphorus slag [J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(1): 121–126. DOI: https://doi.org/10.1007/s12613-010-0121-2.

    Article  Google Scholar 

  10. SU Yi, LI Guo-bing, XIA Ju-pei. Kinetic study of Fe removal from precipitated silica prepared from yellow phosphorus slag [J]. The Canadian Journal of Chemical Engineering, 2009, 87(4): 610–613. DOI: https://doi.org/10.1002/cjce.20197.

    Article  Google Scholar 

  11. DONG Long-jun, DENG Si-jia, WANG Fei-yue. Some developments and new insights for environmental sustainability and disaster control of tailings dam [J]. Journal of Cleaner Production, 2020, 269: 122270. DOI: https://doi.org/10.1016/j.jclepro.2020.122270.

    Article  Google Scholar 

  12. LI Guo-bing, LIN Hai, MA Yan-li, et al. Experimental study of purifying precipitated silica produced from yellow phosphorus slag [J]. Advanced Materials Research, 2012, 455–456: 503–506. DOI: https://doi.org/10.4028/www.scientific.net/amr.455-456.503.

    Google Scholar 

  13. MIN Chen-di, SHI Ying, LIU Zhi-xiang. Properties of cemented phosphogypsum (PG) backfill in case of partially substitution of composite Portland cement by ground granulated blast furnace slag [J]. Construction and Building Materials, 2021, 305: 124786. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124786.

    Article  Google Scholar 

  14. SHI Ying, CHENG Ling, TAO Ming, et al. Using modified quartz sand for phosphate pollution control in cemented phosphogypsum (PG) backfill [J]. Journal of Cleaner Production, 2021, 283: 124652. DOI: https://doi.org/10.1016/j.jclepro.2020.124652.

    Article  Google Scholar 

  15. TIAN Tao, KE Wen-shun, ZHU Feng, et al. Effect of substrate amendment on alkaline minerals and aggregate stability in bauxite residue [J]. Journal of Central South University, 2019, 26(2): 393–403. DOI: https://doi.org/10.1007/s11771-019-4011-0.

    Article  Google Scholar 

  16. LI **-bing, ZHOU Zi-long, ZHAO Guo-yan, et al. Utilization of phosphogypsum for backfilling, way to relieve its environmental impact [J]. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 2008, 24(4): 223–232.

    Google Scholar 

  17. CAO Zhi-wei, LIU Bing, LI **-bing, et al. Experimental study on backfilling mine goafs with chemical waste phosphogypsum [J]. Geofluids, 2019, 2019: 9218916. DOI: https://doi.org/10.1155/2019/9218916.

    Article  Google Scholar 

  18. LI **-bing, ZHOU Ya-nan, ZHU Quan-qi, et al. Slurry preparation effects on the cemented phosphogypsum backfill through an orthogonal experiment [J]. Minerals, 2019, 9(1): 31. DOI: https://doi.org/10.3390/min9010031.

    Article  Google Scholar 

  19. YIN Tu-bing, YANG Ru-shi, DU **g, et al. Effects of acid and phosphate on arsenic solidification in a phosphogypsum-based cement backfill process [J]. RSC Advances, 2019, 9(48): 28095–28101. DOI: https://doi.org/10.1039/c9ra04624k.

    Article  Google Scholar 

  20. KASAP T, YILMAZ E, GUNER N U, et al. Recycling dam tailings as cemented mine backfill: Mechanical and geotechnical properties [J]. Advances in Materials Science and Engineering, 2022, 2022: 1–12. DOI: https://doi.org/10.1155/2022/6993068.

    Article  Google Scholar 

  21. KASAP T, YILMAZ E, SARI M. Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings [J]. Journal of Environmental Management, 2022, 314: 115034. DOI: https://doi.org/10.1016/j.jenvman.2022.115034.

    Article  Google Scholar 

  22. SARI M, YILMAZ E, KASAP T, et al. Strength and microstructure evolution in cemented mine backfill with low and high pH pyritic tailings: Effect of mineral admixtures [J]. Construction and Building Materials, 2022, 328: 127109. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127109.

    Article  Google Scholar 

  23. XUE Gai-li, YILMAZ E. Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads [J]. Construction and Building Materials, 2022, 338: 127667. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127667.

    Article  Google Scholar 

  24. YAN Bao-xu, JIA Han-wen, YILMAZ E, et al. Numerical investigation of cree** rockmass interaction with hardening and shrinking cemented paste backfill [J]. Construction and Building Materials, 2022, 340: 127639. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127639.

    Article  Google Scholar 

  25. SHI Ying, GAN Lei, LI **-bing, et al. Dynamics of metals in backfill of a phosphate mine of Guiyang, China using a three-step sequential extraction technique [J]. Chemosphere, 2018, 192: 354–361. DOI: https://doi.org/10.1016/j.chemosphere.2017.10.161.

    Article  Google Scholar 

  26. LI **-bing, DU **g, GAO Li, et al. Immobilization of phosphogypsum for cemented paste backfill and its environmental effect [J]. Journal of Cleaner Production, 2017, 156: 137–146. DOI: https://doi.org/10.1016/j.jclepro.2017.04.046.

    Article  Google Scholar 

  27. WOJTACHA-RYCHTER K, SMOLIŃSKI A. Research on a gas index reflecting the sorption process on carbon materials in coal mines [J]. Sustainability, 2018, 10(7): 2468. DOI: https://doi.org/10.3390/su10072468.

    Article  Google Scholar 

  28. ZHENG Chun-shan, KIZIL M S, CHEN Zhong-wei, et al. Effects of coal properties on ventilation air leakage into methane gas drainage boreholes: Application of the orthogonal design [J]. Journal of Natural Gas Science and Engineering, 2017, 45: 88–95. DOI: https://doi.org/10.1016/j.jngse.2017.05.005.

    Article  Google Scholar 

  29. XUE Jian-liang, ZHAO Dong-feng, CHENG Jian-guang, et al. Sources of particular pollutants inAmbient air at a petrochemical enterprise [J]. China Petroleum Processing & Petrochemical Technology, 2013, 15(4): 33–37.

    Google Scholar 

  30. LI Zi-yun, WU Guang, CHEN Jia-yi, et al. A novel gas sensor detection of hydrogen sulfide in tunnel construction [J]. Science of Advanced Materials, 2019, 11(1): 147–151. DOI: https://doi.org/10.1166/sam.2019.3431.

    Article  Google Scholar 

  31. CHEN Qiu-song, ZHANG Qin-li, FOURIE A, et al. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill [J]. Journal of Environmental Management, 2017, 201: 19–27. DOI: https://doi.org/10.1016/j.jenvman.2017.06.027.

    Article  Google Scholar 

  32. KIRAGOSYAN K, PICARD M, SOROKIN D Y, et al. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H2S removal from sour gas streams [J]. Journal of Hazardous Materials, 2020, 386: 121916. DOI: https://doi.org/10.1016/j.jhazmat.2019.121916.

    Article  Google Scholar 

  33. SANNI S E, AGBOOLA O, FAGBIELE O, et al. Optimization of natural gas treatment for the removal of CO2 and H2S in a novel alkaline-DEA hybrid scrubber [J]. Egyptian Journal of Petroleum, 2020, 29(1): 83–94. DOI: https://doi.org/10.1016/j.ejpe.2019.11.003.

    Article  Google Scholar 

  34. SCHOLES C A, STEVENS G W, KENTISH S E. Membrane gas separation applications in natural gas processing [J]. Fuel, 2012, 96: 15–28. DOI: https://doi.org/10.1016/j.fuel.2011.12.074.

    Article  Google Scholar 

  35. MIN Chen-di, LI **-bing, HE Su-ya, et al. Effect of mixing time on the properties of phosphogypsum-based cemented backfill [J]. Construction and Building Materials, 2019, 210: 564–573. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.187.

    Article  Google Scholar 

  36. SONG Su-**, JENNINGS H M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag [J]. Cement and Concrete Research, 1999, 29(2): 159–170. DOI: https://doi.org/10.1016/S0008-8846(98)00212-9.

    Article  Google Scholar 

  37. DIMBOUR J P, GILBERT D, DANDRIEUX A, et al. Assessment of the effectiveness of downward water sprays for mitigating gaseous chlorine releases in partially confined spaces [J]. Journal of Hazardous Materials, 2003, 96(2–3): 127–141. DOI: https://doi.org/10.1016/S0304-3894(02)00200-5.

    Article  Google Scholar 

  38. FAN Hai-hong, ZHANG Shi-yang, LI Bin-bin, et al. Control of sulfur-containing gas during drying of sludge [J]. Bulletin of the Chinese Ceramic Society, 2017, 36(3): 888–892. DOI: https://doi.org/10.16552/j.cnki.issn1001-1625.2017.03.022. (in Chinese)

    Google Scholar 

  39. HAN J W, HASSOLI N, LEE K S, et al. Dry scrubbing of gaseous HCl and SO2 with hydrated lime in entrained mixing reactor [J]. Powder Technology, 2021, 393: 471–481. DOI: https://doi.org/10.1016/j.powtec.2021.05.089.

    Article  Google Scholar 

  40. JULIASTUTI S R, HENDRIANIE N, DIAN P Y, et al. Reduction of P2O5 and F from phosphogypsum by CaO addition [J]. MATEC Web of Conferences, 2018, 156: 03021. DOI: https://doi.org/10.1051/matecconf/201815603021.

    Article  Google Scholar 

  41. KIM M S, JUN Y B, LEE C H, et al. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag [J]. Cement and Concrete Research, 2013, 54: 208–214. DOI: https://doi.org/10.1016/j.cemconres.2013.09.011.

    Article  Google Scholar 

  42. SEO J, PARK S, YOON H N, et al. Effect of CaO incorporation on the microstructure and autogenous shrinkage of ternary blend Portland cement-slag-silica fume [J]. Construction and Building Materials, 2020, 249: 118691. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118691.

    Article  Google Scholar 

  43. KANG **n-ying, SU Yi, ZHAO Yu-lin, et al. Study on Fe leaching kinetic in the acid solution process of yellow phosphorus slag [J]. Bulletin of the Chinese Ceramic Society, 2012, 31(6): 1367–1370. DOI: https://doi.org/10.16552/j.cnki.issn1001-1625.2012.06.023. (in Chinese)

    Google Scholar 

  44. DEGIRMENCI N, OKUCU A, TURABI A. Application of phosphogypsum in soil stabilization [J]. Building and Environment, 2007, 42(9): 3393–3398. DOI: https://doi.org/10.1016/j.buildenv.2006.08.010.

    Article  Google Scholar 

  45. HAN Chao, GENG **-ju, ZHANG Juan, et al. Phosphine migration at the water-air interface in Lake Taihu, China [J]. Chemosphere, 2011, 82(6): 935–939. DOI: https://doi.org/10.1016/j.chemosphere.2010.09.067.

    Article  Google Scholar 

  46. JUNG H, KANG J, CHUN H, et al. First principles computational study on hydrolysis of hazardous chemicals phosphorus trichloride and oxychloride (PCl3 and POCl3) catalyzed by molecular water clusters [J]. Journal of Hazardous Materials, 2018, 341: 457–463. DOI: https://doi.org/10.1016/j.jhazmat.2017.08.054.

    Article  Google Scholar 

  47. GBZ 2.1-2007. Occupational exposure limits for hazardous agents in the workplace. Part 1: Chemical hazardous agents [S].

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHOU Ya-nan: conceptualization, methodology, data curation and writing-original draft; LI **-bing: writing-review and editing, and supervision; MIN Chen-di: writing-review and editing, methodology. FAN Yun: Writing-review and editing, and validation; GAN Lei: Writing-review and editing, and formal analysis; SHI Ying: Writing-review and editing, and funding acquisition.

Corresponding author

Correspondence to Ying Shi  (石英).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Projects(42177160, 72088101, 11972378) supported by the National Natural Science Foundation of China; Project (CX20220103) supported by the Postgraduate Scientific Research Innovation Project of Hunan Province, China; Project (2022ZZTS0012) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Yn., Li, Xb., Min, Cd. et al. Release of toxic gases in the process of cemented backfill with phosphorus waste. J. Cent. South Univ. 30, 202–213 (2023). https://doi.org/10.1007/s11771-023-5236-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5236-5

Key words

关键词

Navigation