Log in

Direct transformation of tungsten trioxide monohydrate into ammonium paratungstate tetrahydrate in ammonium salt solutions

铵盐溶液中一水合三氧化钨直接转型制备仲钨酸铵

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The present researches and developments for ammonium paratungstate tetrahydrate production always suffer from at least one of the following problems: long production process, high-energy consumption, low tungsten crystallization ratio and serious environmental pollutions. The objective of this work is to develop a sustainable technology to directly produce ammonium paratungstate tetrahydrate. The results show that the starting material, tungsten trioxide monohydrate, can stoichiometrically react with ammonium bicarbonate or ammonium carbonate by direct transformation reaction in an airtight container under different experimental conditions. The dense-surface ammonium paratungstate tetrahydrate with the average particle size of 61.7 µm was prepared by adding solid tungsten trioxide monohydrate and 80×10−6 g/L PEG2000 into the ammonium bicarbonate solution with the liquid-to-solid mass ratio of 2 at 80 °C for 3 h. The chemical purity of the transformed ammonium paratungstate tetrahydrate meets the standards of APT·4H2O-0 grade.

摘要

针对目前四水合仲钨酸铵生产和开发过程中存在流程长、能源消耗高、钨结晶率低和环境污染 严重等问题,本文开发了一种经济、高效、可持续的技术直接转型制备四水合仲钨酸铵。结果表明, 在不同的实验条件下,原料一水合三氧化钨与碳酸氢铵或碳酸铵按生成仲钨酸铵的化学计量配比,可 在密闭容器中进行直接转化得到仲钨酸铵产品。控制反应条件为:温度80 ℃,液固质量比2:1,添 加剂PEG2000 加入量80×10−6 g/L,固相一水合三氧化钨与碳酸氢铵溶液反应3 h。制备出的四水合仲钨 酸铵产品颗粒表面致密,**均粒径为61.7 μm。转型得到的仲钨酸铵产品化学纯度符合APT·4H2O-0 级 品标准。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. HAN Na-na, YANG K R, LU Zhi-yi, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid [J]. Nature Communications, 2018, 9(1): 1–10. DOI: https://doi.org/10.1038/s41467-018-03429-z.

    Article  Google Scholar 

  2. LI Quan, ZHOU Dan, ZHENG Wei-tao, et al. Global structural optimization of tungsten borides [J]. Physical Review Letters, 2013, 110(13): 136403. DOI: https://doi.org/10.1103/PhysRevLett.110.136403.

    Article  Google Scholar 

  3. WURSTER S, BALUC N, BATTABYAL M, et al. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials [J]. Journal of Nuclear Materials, 2013, 442(1–3): S181–S189. DOI: https://doi.org/10.1016/j.jnucmat.2013.02.074.

    Article  Google Scholar 

  4. POLINI R, MARCUCCI A, D’OTTAVI C, et al. Toward greener synthesis of WC powders for cemented tungsten carbides manufacturing [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8458–8466. DOI: https://doi.org/10.1021/acssuschemeng.1c01286.

    Article  Google Scholar 

  5. HE **g, WU Pei-wen, WU Ying-cheng, et al. Taming interfacial oxygen vacancies of amphiphilic tungsten oxide for enhanced catalysis in oxidative desulfurization [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8930–8938. DOI: https://doi.org/10.1021/acssuschemeng.7b01741.

    Article  Google Scholar 

  6. SPETTER D, TAHIR M N, HILGERT J, et al. Solvothermal synthesis of molybdenum-tungsten oxides and their application for photoelectrochemical water splitting [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12641–12649. DOI: https://doi.org/10.1021/acssuschemeng.8b01370.

    Article  Google Scholar 

  7. LIAO Ji-qiao, CHEN Shao-yi, ZOU Zhi-qiang, et al. Influence of tungsten oxides’ characteristics on fineness, homogeneity and looseness of reduced ultrafine tungsten powder [J]. International Journal of Refractory Metals and Hard Materials, 1999, 17(6): 423–429. DOI: https://doi.org/10.1016/S0263-4368(99)00033-5.

    Article  Google Scholar 

  8. LUNK H J, HARTL H. Discovery, properties and applications of tungsten and its inorganic compounds [J]. Chem Texts, 2019, 5(3): 1–37. DOI: https://doi.org/10.1007/s40828-019-0088-1.

    Google Scholar 

  9. LIMA M J S, SOUTO M V M, SOUZA A S, et al. Synthesis of nanostructured tungsten carbide (WC) from ammonia paratungstate-APT and its characterization by XRD and rietveld refinement [J]. Materials Science Forum, 2017, 899: 31–35. DOI: https://doi.org/10.4028/www.scientific.net/msf.899.31.

    Article  Google Scholar 

  10. KALPAKLI A O, ARABACI A, KAHRUMAN C, et al. Thermal decomposition of ammonium paratungstate hydrate in air and inert gas atmospheres [J]. International Journal of Refractory Metals and Hard Materials, 2013, 37: 106–116. DOI: https://doi.org/10.1016/j.ijrmhm.2012.11.004.

    Article  Google Scholar 

  11. SZILÁGYI I M, MADARÁSZ J, HANGE F, et al. Partialthermal reduction of ammonium paratungstate tetrahydrate [J]. Journal of Thermal Analysis and Calorimetry, 2007, 88(1): 139–144. DOI: https://doi.org/10.1007/s10973-006-8078-0.

    Article  Google Scholar 

  12. WAN Lin-sheng, GONG Dan-dan, FU Zan-hui, et al. Study on the removing of ammonia nitrogen in ammonium paratungstate crystal parent solution [J]. Advanced Materials Research, 2011, 402: 261–265. DOI: https://doi.org/10.4028/www.scientific.net/amr.402.261.

    Article  Google Scholar 

  13. BABA A A, MUHAMMED M O, RAJI M A, et al. Purification of a Nigerian wolframite ore for improved industrial applications [C]//Rare Metal Technology 2018. 2018: 265–272. DOI: https://doi.org/10.1007/978-3-319-72350-1_25.

    Google Scholar 

  14. LI Jiang-tao, ZHAO Zhong-wei. Kinetics of scheelite concentrate digestion with sulfuric acid in the presence of phosphoric acid [J]. Hydrometallurgy, 2016, 163: 55–60. DOI: https://doi.org/10.1016/j.hydromet.2016.03.009.

    Article  Google Scholar 

  15. LASSNER E. From tungsten concentrates and scrap to highly pure ammonium paratungstate (APT) [J]. International Journal of Refractory Metals and Hard Materials, 1995, 13(1–3): 35–44. DOI: https://doi.org/10.1016/0263-4368(95)00002-X.

    Article  Google Scholar 

  16. XU **ang-ming, ZHOU Ke-chao, LI **ao-bin, et al. Leaching of synthetic Ca3WO6 with ammoniacal ammonium carbonate solution under atmospheric pressure: A fundamental study [J]. Hydrometallurgy, 2019, 184: 55–66. DOI: https://doi.org/10.1016/j.hydromet.2018.12.026.

    Article  Google Scholar 

  17. LI **ao-bin, XU **ang-ming, ZHOU Qiu-sheng, et al. Ca3WO6 prepared by roasting tungsten-containing materials and its leaching performance [J]. International Journal of Refractory Metals and Hard Materials, 2015, 52: 151–158. DOI: https://doi.org/10.1016/j.ijrmhm.2015.06.003.

    Article  Google Scholar 

  18. XU **ang-ming, LI **ao-bin, ZHOU Qiu-sheng, et al. Equilibrium WO3 concentration in the Ca2+-(NH4)2CO3-(NH4)2WO4-NH3-H2O system [J]. Chemical Engineering Science, 2019, 206: 156–163. DOI: https://doi.org/10.1016/j.ces.2019.05.038.

    Article  Google Scholar 

  19. van PUT J W, WITKAMP G J, van ROSMALEN G M. Formation of ammonium paratungstate tetra- and hexahydrate. I: Stability [J]. Hydrometallurgy, 1993, 34(2): 187–201. DOI: https://doi.org/10.1016/0304-386X(93)90034-B.

    Article  Google Scholar 

  20. BASU A K, SALE F R. Characterization of various commercial forms of ammonium paratungstate powder [J]. Journal of Materials Science, 1975, 10(4): 571–577. DOI: https://doi.org/10.1007/BF00566563.

    Article  Google Scholar 

  21. PAULINO J F, AFONSO J C, MANTOVANO J L, et al. Recovery of tungsten by liquid-liquid extraction from a wolframite concentrate after fusion with sodium hydroxide [J]. Hydrometallurgy, 2012, 127–128: 121–124. DOI: https://doi.org/10.1016/j.hydromet.2012.07.018.

    Article  Google Scholar 

  22. LI **ao-bin, LU Zhi-gang, YUN Wei-tao, et al. Preparation of double ammonium-sodium paratungstate and its transformation to ammonium paratungstate [J]. JOM, 2018, 70(11): 2523–2528. DOI: https://doi.org/10.1007/s11837-018-3037-3.

    Article  Google Scholar 

  23. XIANG De-wang, ZHU Bin, WAN Yin-hua, et al. A new technique for quick production of ammonium paratungstate (APT) crystals by a liquid membrane [J]. Journal of Membrane Science, 1995, 105(1–2): 55–62. DOI: https://doi.org/10.1016/0376-7388(95)00044-D.

    Google Scholar 

  24. BECKSTEAD L W, KEARNS T C, CHOU E C. Purification of APT: US, 4963336[P].1990-10-16.

  25. ZHANG **ao-bing, WAN Lin-sheng, ZOU Ai-zhong. Research on production process parameters of high-purity ammonium paratungstate by ammonia dissolving [J]. Nonferrous Metals Engineering & Research, 2012, 33(5): 20–22, 25.(in Chinese)

    Google Scholar 

  26. SRIVASTAVA S C, BHAISARE S R, WAGH D N, et al. Analysis of tungsten in low grade ores and geological samples [J]. Bulletin of Materials Science, 1996, 19(2): 331–343. DOI: https://doi.org/10.1007/BF02744670.

    Article  Google Scholar 

  27. van PUT J W. Crystallisation and processing of ammonium paratungstate (APT) [J]. International Journal of Refractory Metals and Hard Materials, 1995, 13(1–3): 61–76. DOI: https://doi.org/10.1016/0263-4368(94)00003-4.

    Article  Google Scholar 

  28. WEISS G. The structure of the paratungstate anion using the example of (NH4)10[H2W12O42]·10H2O [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1969, 368: 279–283. DOI: https://doi.org/10.1002/zaac.19693680509. (in German)

    Article  Google Scholar 

  29. HEMPEL K, SARADSHOW M. Solubility and stable hydrates in the system ammonium paratungstate—water) [J]. Kristall und Technik, 1967, 2(3): 437–445. DOI: https://doi.org/10.1002/crat.19670020316. (in German)

    Article  Google Scholar 

  30. ZHOU Qiu-sheng, LI Dong, ZHU Zhi-cheng, et al. Sodium/potassium precipitation behavior during evaporative crystallization of ammonium paratungstate from ammonium tungstate/nitrate solution [J]. The Chinese Journal of Process Engineering, 2018, 18(1): 118–125.

    Google Scholar 

  31. GODDARD J B. Effect of impurities on crystallizing ammonium paratungstate [J]. Minerals & Metallurgical Processing, 1984, 1(3): 185–189. DOI: https://doi.org/10.1007/BF03402575.

    Google Scholar 

  32. de LA O E P, ALHAZMI N, EBBENS S J, et al. Influence of additives on the in situ crystallization dynamics of methyl ammonium lead halide perovskites [J]. ACS Applied Energy Materials, 2021, 4(2): 1398–1409. DOI: https://doi.org/10.1021/acsaem.0c02625.

    Article  Google Scholar 

  33. KRISHNAMOORTHI S, KARUPPANNAN S. Influence of additives on the crystal growth kinetics and growth rate of ammonium dihydrogen phosphate (ADP) single crystals [J]. Materials Science and Engineering B, 2021, 263: 114858. DOI: https://doi.org/10.1016/j.mseb.2020.114858.

    Article  Google Scholar 

  34. YIN Zhou-lan, JING Ye-ling, CHEN Qi-yuan, et al. Effect of polymers on seed precipitation of sodium aluminate solution [J]. Transattions of Nonferrous Metals Society of China, 2007, 17(6): 1002–1007. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2007.06.027.

    Google Scholar 

  35. PEE J H, KIM G H, LEE H Y, et al. Extraction factor of pure ammonium paratungstate from tungsten scraps [J]. Archives of Metallurgy and Materials, 2015, 60(2): 1403–1405. DOI: https://doi.org/10.1515/amm-2015-0141.

    Article  Google Scholar 

  36. LI Yun-jiao, SUN Pei-mei, LI Hong-gui, et al. Preparation of ammonium paratungstate with coarse grain by evaporating crystallization [J]. Journal of Central South University of Technology, 1997, 4(1): 32–35. DOI: https://doi.org/10.1007/s11771-997-0026-z.

    Article  Google Scholar 

  37. LI Zheng, LIU Gui-hua, LI **ao-bin, et al. Effects of cation on the morphology of boehmite precipitated from alkaline solutions by adding gibbsite as seed [J]. Crystal Growth & Design, 2019, 19(3): 1778–1785. DOI: https://doi.org/10.1021/acs.cgd.8b01756.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHOU Qiu-sheng, LI ** provided and analyzed the measured data.

Corresponding author

Correspondence to Li-qun Yang  (杨利群).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(52074364) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Qs., **ang, Lj., Huang, Qp. et al. Direct transformation of tungsten trioxide monohydrate into ammonium paratungstate tetrahydrate in ammonium salt solutions. J. Cent. South Univ. 30, 121–131 (2023). https://doi.org/10.1007/s11771-023-5232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5232-9

Key words

关键词

Navigation