Log in

Laboratory and temporal moment analysis of tracer-based solute transport in karst conduits

基于示踪试验和时域矩分析的岩溶管道溶质运移规律研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Tracer test is an effective tool for characterizing the complex conduits and exploring the solute transport law for karst aquifers. In this study, three generalized karst conduit models were established, including auxiliary side conduit, cave, and waterfall. A series of tracer tests were conducted to obtain tracer residence time distribution curves. These tracer curves were used for performing temporal moment analysis to estimate fluid flow characteristics and solute transport process of karst conduit models. The results demonstrate that the residence time distribution curves are mainly constrained to the length and path differences of auxiliary side conduits, the lengths and geometries of pools, and the lengths and numbers of waterfalls. Although the multi-peaked residence time distribution curve is the basis for judging the existence of multiple karst conduits with path differences, the number of paths cannot be determined directly. Moreover, it can be presumed that there are some caves or waterfalls when the residence time distribution curve has a long tail. This study provided some useful references for the development of solute transport theory in karst conduits.

摘要

地下水示踪试验可用于表征复杂岩溶管道结构特征、探究含水层溶质的运移规律。本文尝试建 立了支管道、溶潭及跌水三类岩溶管道模型,并开展了一系列示踪试验以获取相应的示踪停留时间分 布曲线。通过对上述停留时间分布曲线进行时域矩分析,分析了岩溶管道内的流体流动特性及溶质运 移过程规律。结果表明,示踪曲线主要受支管道长度及路径差异、溶潭长度及形状、跌水长度及数量 的影响。示踪曲线的多峰性是判断地层存在多条路径差不同的运移通道的重要依据之一,值得注意的 是峰的数量不能直接用于判定路径数量。此外,当示踪曲线呈现长拖尾状时,可推测地层内存在溶潭 及跌水等岩溶构造。本文研究结果为岩溶管道溶质运移理论研究提供了一些有益的参考和借鉴。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. MORALES T, URIARTE J A, OLAZAR M, et al. Solute transport modelling in Karst conduits with slow zones during different hydrologic conditions [J]. Journal of Hydrology, 2010, 390(3–4): 182–189. DOI: https://doi.org/10.1016/j.jhydrol.2010.06.041.

    Article  Google Scholar 

  2. FIELD M S, LEIJ F J. Solute transport in solution conduits exhibiting multi-peaked breakthrough curves [J]. Journal of Hydrology, 2012, 440–441: 26–35. DOI: https://doi.org/10.1016/j.jhydrol.2012.03.018.

    Article  Google Scholar 

  3. DEWAIDE L, BONNIVER I, ROCHEZ G, et al. Solute transport in heterogeneous Karst systems: Dimensioning and estimation of the transport parameters via multi-sampling tracer-tests modelling using the OTIS (One-dimensional Transport with Inflow and Storage) program [J]. Journal of Hydrology, 2016, 534: 567–578. DOI: https://doi.org/10.1016/j.jhydrol.2016.01.049.

    Article  Google Scholar 

  4. SHOOK G M, SUZUKI A. Use of tracers and temperature to estimate fracture surface area for EGS reservoirs [J]. Geothermics, 2017, 67: 40–47. DOI: https://doi.org/10.1016/j.geothermics.2016.12.006.

    Article  Google Scholar 

  5. KITTILÄ A, JALALI M R, EVANS K F, et al. Field comparison of DNA-labeled nanoparticle and solute tracer transport in a fractured crystalline rock [J]. Water Resources Research, 2019, 55(8): 6577–6595. DOI: https://doi.org/10.1029/2019WR025021.

    Article  Google Scholar 

  6. FIELD M S. The QTRACER2 program for tracer-breakthrough curve analysis for tracer tests in karstic aquifers and other hydrologic systems[M]. National Center for Environmental Assessment—Washington Office, Office of Research and Development, US Environmental Protection Agency, 2002.

  7. WANG Chao-qi, WANG **ao-guang, MAJDALANI S, et al. Influence of dual conduit structure on solute transport in Karst tracer tests: An experimental laboratory study [J]. Journal of Hydrology, 2020, 590: 125255. DOI: https://doi.org/10.1016/j.jhydrol.2020.125255.

    Article  Google Scholar 

  8. SHOOK S M, FORSMANN J H. Tracer interpretation using temporal moments on a spreadsheet (No. INL/EXT-05-00400) [R]. Idaho National Laboratory, 2005. DOI: https://doi.org/10.2172/910998.

  9. KITTILÄ A, JALALI M, SAAR M, et al. Solute tracer test quantification of the effects of hot water injection into hydraulically stimulated crystalline rock [J]. Geothermal Energy, 2020, 8: 1–21. DOI: https://doi.org/10.1186/s40517-020-00172-x.

    Article  Google Scholar 

  10. SHOOK G. A simple, fast method of estimating fractured reservoir geometry from tracer tests [J]. Geothermal Resources Council Transactions, 2003, 27: 407–411.

    Google Scholar 

  11. KITTILÄ A, JALALI M R, SOMOGYVÁRI M, et al. Characterization of the effects of hydraulic stimulation with tracer-based temporal moment analysis and tomographic inversion [J]. Geothermics, 2020, 86: 101820. DOI: https://doi.org/10.1016/j.geothermics.2020.101820.

    Article  Google Scholar 

  12. HUANG **n, LI Shu-cai, XU Zhen-hao, et al. An attribute recognition model for safe thickness assessment between concealed Karst cave and tunnel [J]. Journal of Central South University, 2019, 26(4): 955–969. DOI: https://doi.org/10.1007/s11771-019-4063-1.

    Article  Google Scholar 

  13. JI Huai-song, LUO Ming-ming, YIN Mao-sheng, et al. Storage and release of conservative solute between Karst conduit and fissures using a laboratory analog [J]. Journal of Hydrology, 2022, 612: 128228. DOI: https://doi.org/10.1016/j.jhydrol.2022.128228.

    Article  Google Scholar 

  14. WU Yue-xia, HUNKELER D. Hyporheic exchange in a Karst conduit and sediment system—A laboratory analog study [J]. Journal of Hydrology, 2013, 501: 125–132. DOI: https://doi.org/10.1016/j.jhydrol.2013.07.040.

    Article  Google Scholar 

  15. LEIJ F J, TORIDE N, FIELD M S, et al. Solute transport in dual-permeability porous media [J]. Water Resources Research, 2012, 48(4): W04523. DOI: https://doi.org/10.1029/2011WR011502.

    Article  Google Scholar 

  16. ZHAO **ao-er, CHANG Yong, WU Ji-chun, et al. Laboratory investigation and simulation of breakthrough curves in Karst conduits with pools [J]. Hydrogeology Journal, 2017, 25(8): 2235–2250. DOI: https://doi.org/10.1007/s10040-017-1626-9.

    Article  Google Scholar 

  17. ZHANG Jia-ming, XU Ze-min. Dye tracer infiltration technique to investigate macropore flow paths in Maka Mountain, Yunnan Province, China [J]. Journal of Central South University, 2016, 23(8): 2101–2109. DOI: https://doi.org/10.1007/s11771-016-3266-y.

    Article  Google Scholar 

  18. DOU Zhi, CHEN Zhou, ZHOU Zhi-fang, et al. Influence of eddies on conservative solute transport through a 2D single self-affine fracture [J]. International Journal of Heat and Mass Transfer, 2018, 121: 597–606. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.037.

    Article  Google Scholar 

  19. MOSTHAF K, BRAUNS B, FJORDBØGE A S, et al. Conceptualization of flow and transport in a limestone aquifer by multiple dedicated hydraulic and tracer tests [J]. Journal of Hydrology, 2018, 561: 532–546. DOI: https://doi.org/10.1016/j.jhydrol.2018.04.011.

    Article  Google Scholar 

  20. FIORI A, BECKER M W. Power law breakthrough curve tailing in a fracture: The role of advection [J]. Journal of Hydrology, 2015, 525: 706–710. DOI: https://doi.org/10.1016/j.jhydrol.2015.04.029.

    Article  Google Scholar 

  21. PHIRANI J, ROY S, PANT H J. Predicting stagnant pore volume in porous media using temporal moments of tracer breakthrough curves [J]. Journal of Petroleum Science and Engineering, 2018, 165: 640–646. DOI: https://doi.org/10.1016/j.petrol.2018.02.066.

    Article  Google Scholar 

  22. SHOOK G M, ANSLEY S L, WYLIE A. Tracers and tracer testing: Design, implementation, and interpretation methods [M]. Washington D C, United States: Bechtel BWXT Idaho, LLC: Idaho National Engineering and Environmental Laboratory, 2004.

    Book  Google Scholar 

  23. MILLER B V, GROVES C, LERCH R N. Protecting the water quality of carroll cave and Toronto springs, Missouri, through groundwater recharge area delineation of groundwater recharge areas [J]. Geological Society of America Meeting, 2010: 182–219.

  24. SIRIVITHAYAPAKORN S, KELLER A. Transport of colloids in saturated porous media: A pore-scale observation of the size exclusion effect and colloid acceleration [J]. Water Resources Research, 2003, 39(4): 1109–1120. DOI: https://doi.org/10.1029/2002WR001583.

    Article  Google Scholar 

  25. HUANG Fu, ZHANG Min, JIANG Zhen. Collapse mode of rock mass induced by a concealed Karst cave above a deep cavity [J]. Journal of Central South University, 2019, 26(7): 1747–1754. DOI: https://doi.org/10.1007/s11771-019-4130-7.

    Article  Google Scholar 

  26. LEE S H, YEO I W, LEE Kang-kun, et al. Tail shortening with develo** eddies in a rough-walled rock fracture [J]. Geophysical Research Letters, 2015, 42(15): 6340–6347. DOI: https://doi.org/10.1002/2015GL065116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG **n-tong provided and analyzed the experimental data and edited the draft of the manuscript. ZHANG Yi-chi conducted the literature review. LIN Peng edited the manuscript. XU Zhen-hao developed the overarching research goals and edited the manuscript.

Corresponding author

Correspondence to Zhen-hao Xu  (许振浩).

Additional information

Conflict of interest

WANG **n-tong, ZHANG Yi-chi, LIN Peng and XU Zhen-hao declare that they have no conflict of interest.

Foundation item: Projects(52022053, 52009073) supported by the National Natural Science Foundation of China; Project(BK20220987) supported by the Natural Science Foundation of Jiangsu Province, China; Project(ZR201910270116) supported by the Natural Science Foundation of Shandong Province, China; Project(2022ZB189) supported by the Jiangsu Funding Program for Excellent Postdoctoral Talent, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xt., Zhang, Yc., Lin, P. et al. Laboratory and temporal moment analysis of tracer-based solute transport in karst conduits. J. Cent. South Univ. 30, 306–330 (2023). https://doi.org/10.1007/s11771-023-5230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5230-y

Key words

关键词

Navigation