Log in

Isothermal diffusion of water vapor in unsaturated soils based on Fick’s second law

基于Fick 第二定律的非饱和土中汽态水等温扩散研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mechanism of water vapor in unsaturated soil, a water vapor migration test device was developed to conduct the water vapor migration indoor test. The test results demonstrate that the characteristics of water vapor diffusion in unsaturated soil conformed to Fick’s second law. A mathematical model for water vapor diffusion under isothermal conditions in unsaturated soil was established based on Fick’s law. Factors including the initial moisture content gradient, initial moisture content distribution, soil type and temperature that affect the water vapor diffusion coefficient were analyzed. The results show that there was good agreement between the moisture content calculated by the mathematical model and obtained by the indoor experiment. The vapor diffusion coefficient increased with increasing initial moisture content gradient and temperature. When the initial moisture content gradient is constant, the vapor diffusion coefficient increases with the increase of matrix suction ratio in dry and wet soil section. The effect of soil type on the water vapor diffusion coefficient was complex, as both the moisture content and soil particle sizes affected the water vapor diffusion.

摘要

干旱地区非饱和土中汽态水扩散是水分迁移的主要组成部分,这对农业和工程应用具有重要影 响。为了揭示非饱和土中汽态水扩散机理,研制了汽态水扩散试验装置,进行了非饱和土汽态水扩散 室内试验。试验结果表明非饱和土中汽态水扩散特性符合Fick 第二定律。基于Fick 定律,建立了等 温条件下非饱和土汽态水扩散的数学模型,分析了初始含水率梯度、初始含水率分布、土体类型和温 度等因素对汽态水扩散系数的影响。结果表明:用所建的数学模型计算的含水率与室内试验结果吻合 较好;.汽态水扩散系数随着初始含水率梯度和温度的增加而增大;在初始含水率梯度一定的条件下, 汽态水系数随着这干土段和湿土段基质吸力比值的增大而增大;含水率和土颗粒粒径均对汽态水扩散 系数有所影响,致使土体类型对汽态水扩散系数的影响比较复杂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

θ :

Moisture content

θ s :

Saturated moisture content

θ r :

Residual moisture content

α :

Parameter for the SWCC

n :

Parameter for the SWCC

D :

Water vapor diffusion coefficient

W 0 :

Initial moisture content of the dry soil column

W s1 :

Initial moisture content of the wet soil column

W m :

Initial moisture content gradient

W s2 :

Moisture content of the soil located at 10.5 cm when the time is t

W (x,t) :

Moisture content of the soil at the position x, time t

ρ v :

Water vapor density

ω v :

Molar mass of water vapor

u v :

Partial pressure of water vapor

u v,sat :

Saturated vapor pressure of water

R :

Universal gas constant

T :

Thermodynamic temperature

C(x, t):

Concentration of water vapor at time t and at distance x

uauw :

Matrix suction

(uauw)0 :

Initial matric suction of the dry soil column

(uauw)s :

Matric suction of the soil located at 10.5 cm

(uauw)s1 :

Initial matric suction of the wet soil column

(uauw)s2 :

Matric suction of the soil located at 10.5 cm, time t

(uauw)(x,t) :

Matric suction of soil at the position x and at time t

References

  1. MILLY P C D. A simulation analysis of thermal effects on evaporation from soil [J]. Water Resources Research, 1984, 20(8): 1087–1098. DOI: https://doi.org/10.1029/WR020i008p01087.

    Article  Google Scholar 

  2. SCANLON B, KEESE K, REEDY R, SIMUNEK J, ANDRASKI B J. Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): Field measurements, modeling, and uncertainties [J]. Water Resources Research, 2003, 39(7): 1179. DOI: https://doi.org/10.1029/2002WR001604.

    Article  Google Scholar 

  3. SAKAI M, TORIDE N, SIMUNEK JIRKA J. Water and vapor movement with condensation and evaporation in a sandy column [J]. Soil Sci Soc Am J, 2009, 73(3): 707–717. DOI: https://doi.org/10.2136/sssaj2008.0094.

    Article  Google Scholar 

  4. SHMUEL A, TAMIR K. Liquid and vapor water in vadose zone profiles above deep aquifers in hyper-arid environments [J]. Water Resources Research, 2019, 55(5): 3619–3631. DOI: https://doi.org/10.1029/2018WR024435.

    Article  Google Scholar 

  5. GUTHRIE W S, HERMANSSON A, WOFFINDEN K H. Saturation of granular base material due to water vapor flow during freezing: Laboratory experimentation and numerical modeling [C]// 13th International Conference on Cold Regions Engineering, 2006: 1–12. DOI: https://doi.org/10.1061/40836(210)66.

  6. LIU Fei-fei, MAO Xue-song, XU Cheng, LI Ying-ying, WU Qian, ZHANG Jian-xun. “Covering effects” under diurnal temperature variations in arid and semiarid areas [J]. Advances in Civil Engineering, 2020(5): 1–12. DOI: https://doi.org/10.1155/2020/7496182.

  7. LI Qian. The finite element analysis of covering effect performance of highway asphalt pavement on subgrade in **, HAN Li-ming, HU Jian, PENG Ren, WANG Nai-dong. Pot-cover effect of soil [J]. Industrial Construction, 2014, 44(2): 69–71. DOI: https://doi.org/10.13204/j.gyjz201402016. (in Chinese)

    Google Scholar 

  8. ZHANF Sheng, TENG Ji-dong, HE Zuo-yue, LIU Yan, LIANG Si-hao, YAO Yang-**, SHENG Dai-chao. Canopy effect caused by vapour transfer in covered freezing soils [J]. J Géotechnique, 2016, 66(11): 927–940. DOI: https://doi.org/10.1680/jgeot.16.p.016.

    Article  Google Scholar 

  9. NIU Fu-jun, LI An-yuan, LUO **g, LIN Zhan-ju, YIN Guo-an, LIU Ming-hao, ZHENG Hao, LIU Hua. Soil moisture, ground temperatures, and deformation of a high-speed railway embankment in Northeast China [J]. Cold Regions Science and Technology, 2017, 133: 7–14. DOI: https://doi.org/10.1016/j.coldregions.2016.10.007.

    Article  Google Scholar 

  10. GAO Jian-qiang, LAI Yuan-ming, ZHANG Ming-yi, FENG Zi-liang. Experimental study on the water-heat-vapor behavior in a freezing coarse-grained soil [J]. Applied Thermal Engineering Design Processes Equipment Economics, 2018, 128: 956–965. DOI: https://doi.org/10.1016/j.applthermaleng.2017.09.080.

    Article  Google Scholar 

  11. BAI Rui-qiang, LAI Yuan-ming, ZHANG Ming-yi, GAO Jian-qiang. Water-vapor-heat behavior in a freezing unsaturated coarse-grained soil with a closed top [J]. Cold Regions Science and Technology, 2018, 155: 120–126. DOI: https://doi.org/10.1016/j.coldregions.2018.08.007.

    Article  Google Scholar 

  12. ZENG Ling, YAO **ao-fei, ZHANG Jun-hui, GAO Qian-Feng, CHEN **g-cheng, GUI Yu-tong. Ponded infiltration and spatial-temporal prediction of the water content of silty mudstone[J]. Bulletin of Engineering Geology and the Environment, 2020. DOI: https://doi.org/10.1007/s10064-020-01880-1.

  13. CARY J W. Soil heat transducers and water vapor flow [J]. Soil Sci Soc Am J, 1979, 43(5): 835–839. DOI: https://doi.org/10.2136/sssaj1979.03615995004300050003x.

    Article  Google Scholar 

  14. LI Shu-xun, CHENG Guo-dong. Problem of heat and moisture transfer in freezing and thawing soils [M]. Lanzhou: Lanzhou University Press, 1995. (in Chinese)

    Google Scholar 

  15. LI Shuang-yang, NIU Fu-jun LAI Yuan-ming, PEI Wan-sheng, YU Wen-bing. Optimal design of thermal insulation layer of a tunnel in permafrost regions based on coupled heat-water simulation [J]. Applied Thermal Engineering Design Processes Equipment Economics, 2017, 110: 1264–1273. DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.033.

    Article  Google Scholar 

  16. ZHANG Ming-li, WEN Zhi, DONG Jian-hua, WANG De-kai, HOU Yan-dong, XUE Ke, YANG **ao-yu, SUN Guo-dong. Coupled water-vapor-heat transport in shallow unsaturated zone of active layer in permafrost regions [J]. Rock and Soil Mechanics, 2018, 39(2): 561–570. DOI: https://doi.org/10.16285/j.rsm.2017.1128. (in Chinese)

    Google Scholar 

  17. SVIERCOSKI R F, EFENDIEV Y, MOHANTY B P. Upscaling the coupled water and heat transport in the shallow subsurface [J]. Water Resources Research, 2018, 54: 995–1012. DOI: https://doi.org/10.1002/2017WR021490.

    Article  Google Scholar 

  18. YIN **ao, LIU En-long, SONG Bing-tang, ZHANG De. Numerical analysis of coupled liquid water, vapor, stress and heat transport in unsaturated freezing soil [J]. Cold Regions Science and Technology, 2018, 155: 20–28. DOI: https://doi.org/10.1016/j.coldregions.2018.07.008.

    Article  Google Scholar 

  19. PHILIP J R, DEVRIES D A. Moisture movement in porous materials under temperature gradients [J]. Trans Am Geophys Union, 1957, 38(2): 222–232. DOI: https://doi.org/10.1029/TR038i002p00222.

    Article  Google Scholar 

  20. MIYAZAKI T. Condensation and movement of water vapor in sand under temperature gradient [J]. Transactions of the Japanese Society of Irrigation Drainage & Reclamation Engineering, 1976, 61: 1–8. DOI: https://doi.org/10.11408/jsidre1965.1976.1.

    Google Scholar 

  21. SHAO W, COENDERS-GERRITS M, JUDGE J, ZENG Yi-jian, SU Ye. The impact of non-isothermal soil moisture transport on evaporation fluxes in a maize cropland [J]. Journal of Hydrology, 2018, 561: 335–347. DOI: https://doi.org/10.1016/j.jhydrol.2018.04.018.

    Article  Google Scholar 

  22. MA Hong-yun, YANG Qing-chun, YIN Li-he, HUANG **-ting, ZHANG Jun, WANG **ao-yong, LI Chen-zhu. Isotopic implications for vapor-liquid infiltration pattern in the desert area of ordos plateau, China [J]. Clean-Soil, Air, Water, 2017, 45(5): 1500718. DOI: https://doi.org/10.1002/clen.201500718.

    Article  Google Scholar 

  23. HE Zai-qiu, WANG Tie-hang, ZHAO Shu-de. Coupling calculation method for the transfer of water vapor and liquid water in unsaturated soil [J]. Journal of **’an University of Architecture & Technology, 2004(3): 285–287+298. DOI: https://doi.org/10.15986/j.1006-7930.2004.03.006. (in Chinese)

  24. LI Yan-long, WANG Jun, WANG Tie-hang. Moisture migration of unsaturated soil due to thermal gradients [J]. Rock and Soil Mechanics, 2016, 37(10): 2839–2844. DOI: https://doi.org/10.16285/j.rsm.2016.10.014. (in Chinese)

    Google Scholar 

  25. BAI Rui-qiang, LAI Yuan-ming, ZHANG Ming-yi, REN **g-ge. Study on the coupled heat-water-vapor-mechanics process of unsaturated soils [J]. Journal of Hydrology, 2020, 585: 124784. DOI: https://doi.org/10.1016/j.jhydrol.2020.124784.

    Article  Google Scholar 

  26. WANG Ming-wu, LI Jian, GE Song, QIN Shuai, XU Peng. An experimental study of vaporous water migration in unsaturated lime-treated expansive clay [J]. Environmental Earth Sciences, 2015, 73(4): 1679–1686. DOI: https://doi.org/10.1007/s12665-014-3520-2.

    Article  Google Scholar 

  27. JACKSON R D. Water vapor diffusion in relatively dry soil: I. theoretical considerations and sorption experiments1[J]. Soil Science Society of America Journal, 1964, 28(2): 172–176. DOI: https://doi.org/10.2136/sssaj1964.03615995002800020014x.

    Article  Google Scholar 

  28. JABRO J D. Water vapor diffusion through soil as affected by temperature and aggregate size [J]. Transport in Porous Media, 2009, 77(3): 417–428. DOI: https://doi.org/10.1007/s11242-008-9267-z.

    Article  Google Scholar 

  29. HE Zuo-yue, ZHANG Sheng, TENG Ji-dong, YAO Yang-**, SHENG Dai-chao. A coupled model for liquid water-vapor-heat migration in freezing soils [J]. Cold Regions Science and Technology 2018, 148. DOI: https://doi.org/10.1016/j.coldregions.2018.01.003.

  30. SHAO W, SU Y, LANGHAMMER J. Simulations of coupled non-isothermal soil moisture transport and evaporation fluxes in a forest area [J]. Journal of Hydrology and Hydromechanics, 2018, 66(4): 410–425. DOI: https://doi.org/10.1515/johh-2017-0038.

    Article  Google Scholar 

  31. WANG Nai-dong, MA Zi-qi, YAO Yang-**, JIA Jun-feng, CHEN Han, LI Cheng-zhi. Analysis of moisture migration affected by test period and initial water content [J]. Industrial Construction, 2016, 46(9): 13–16. DOI: https://doi.org/10.13204/j.gyjz201609004. (in Chinese)

    Google Scholar 

  32. ZHANG CY, ZHAO Y D, ZHANG R R, ZHENG Y L. Research on the influence of water vapor diffusion and evaporation on water and heat transfer in frozen soil [J]. Eurasian Soil Science, 2018, 51(10): 1240–1251. DOI: https://doi.org/10.1134/S1064229318100150.

    Article  Google Scholar 

  33. ASTM C136/C136M-14. Standard test method for sieve analysis of fine and coarse aggregates [S]. West Conshohocken, PA: ASTM International, 2014. DOI: https://doi.org/10.1520/C0136C0136M-14.

    Google Scholar 

  34. ASTM D7928–17. Standard test method for particle-size distribution (Gradation) of fine-grained soils using the sedimentation (Hydrometer) analysis [S]. West Conshohocken, PA: ASTM International, 2017. DOI: https://doi.org/10.1520/D7928-17.

    Google Scholar 

  35. ASTM C1699-09(2015). Standard test method for moisture retention curves of porous building materials using pressure plates [S]. West Conshohocken, PA: ASTM International, 2015. DOI: https://doi.org/10.1520/C1699-09R15.

  36. van GENUCHTEN T M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. DOI: https://doi.org/10.2136/sssaj1980.03615995004400050002x.

    Article  Google Scholar 

  37. ZHANG Jun-hui, PENG Jun-hui, LIU Wei-zheng, LU Wei-hua. Predicting resilient modulus of fine-grained subgrade soils considering relative compaction and matric suction [J]. Road Materials and Pavement Design, 2019. DOI: https://doi.org/10.1080/14680629.2019.1651756.

  38. PENG Jun-hui, ZHANG Jun-hui, LI Jue, YAO Yong-sheng, ZHANG An-shun. Modeling humidity and stress-dependent subgrade soils in flexible pavements [J]. Computers and Geotechnics, 2020, 120: 103413. DOI: https://doi.org/10.1016/j.compgeo.2019.103413.

    Article  Google Scholar 

  39. ASTM D4643–17. Standard test method for determination of water content of soil and rock by microwave oven heating [S]. West Conshohocken, PA: ASTM International, 2017. DOI: https://doi.org/10.1520/D4643-17.

    Google Scholar 

  40. KAUFMANN R S. Fick’s law [M]. Netherlands: Springer, 1998.

    Book  Google Scholar 

  41. TETENS O. Uber einige meteorologische Begriffe [J]. Zeitschrift Geophysic, 1930, 6: 297–309. https://www.researchgate.net/publication/290164955.

    Google Scholar 

  42. THOMSON W. On the equilibrium of vapour at a curved surface of liquid [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1871, 42(282): 448–452. DOI: https://doi.org/10.1080/14786447108640606.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-song Mao  (毛雪松).

Additional information

Foundation item: Projects(51878064, 51378072) supported by the National Natural Science Foundation of China; Projects(300102218408, 300102219108) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Ff., Mao, Xs., Zhang, Jx. et al. Isothermal diffusion of water vapor in unsaturated soils based on Fick’s second law. J. Cent. South Univ. 27, 2017–2031 (2020). https://doi.org/10.1007/s11771-020-4427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4427-6

Key words

关键词

Navigation