Log in

Catalytic effect of silver-bearing solid waste on chalcopyrite bioleaching: A kinetic study

微生物作用下含银固体废弃物催化黄铜矿浸出动力学研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Silver ion can be useful in improving chalcopyrite bioleaching efficiency. In this work, leaching kinetics of this process was investigated using silver-bearing solid waste under different chalcopyrite/solid waste ratios. Bioleaching behavior indicates that silver-bearing solid waste can enhance the bioleaching process, and the redox potential is much higher than the proposed appropriate range (380-480 mV vs Ag/AgCl) with the solid waste added. There is a positive correlation between temperature and copper extraction rate. The kinetics data fit well with the shrinking-core model. Under these leaching conditions, the bioleaching of chalcopyrite is controlled by internal diffusion with calculated apparent activation energy (Ea) of 28.24 kJ/mol. This work is possible benificial to promote the industrial application of silver catalyst in leaching of chalcopyrite.

摘要

银能有效地催化黄铜矿浸出, 本文使用含银固体废弃物作为催化剂, 研究了不同黄铜矿/含银固体废弃物配比下的浸出动力学行为. 体系的生物浸出行为表明, 含银固体废弃物能有效催化浸出黄铜矿. 固体废弃物的加入使得体系的氧化还原电位远高于其他学者所提出的最适电位区间(380~480 mV vs Ag/AgCl), 体系浸出温度与铜浸出率呈**相关性. 在此浸出条件下, 黄铜矿的生物浸出主要由扩散控制, 表面活化能 Ea 为 28.24 kJ/mol. 本工作对推广微生物作用下银催化黄铜矿浸出的工业应用有参考价值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG **ng-xing, LIAO Rui, ZHAO Hong-bo, HONG Mao-xing, HUANG **ao-tao, PENG Hong, WEN Wen, QIN Wen-qing, QIU Guan-zhou, HUANG Cao-ming, WANG Jun. Synergetic effect of pyrite on strengthening bornite bioleaching by Leptospirillum ferriphilum [J]. Hydrometallurgy, 2018, 176: 9–16. DOI: 10.1016/j.hydromet.2017.12.003.

    Article  Google Scholar 

  2. ZHAO Hong-bo, ZHANG Yi-sheng, ZHANG **an, QIAN Lu, SUN Meng-lin, YANG Yu, ZHANG Yan-sheng, WANG Jun, KIM Hyun-jung, QIU Guan-zhou. The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview [J]. Minerals Engineering, 2019, 136: 140–154. DOI: 10.1016/j.mineng.2019.03.014.

    Article  Google Scholar 

  3. YANG Bao-jun, ZHAO Chun-xiao, LUO Wen, LIAO Rui, GAN Min, WANG Jun, LIU Xue-duan, QIU Guan-zhou. Catalytic effect of silver on copper release from chalcopyrite mediated by Acidithiobacillus ferrooxidans [J]. Journal of Hazardous Materials, 2020, 392: 122290. DOI: 10.1016/j.jhazmat.2020.122290.

    Article  Google Scholar 

  4. WANG Jun, TAO Lang, ZHAO Hong-bo, HU Ming-hao, ZHENG **-hua, PENG Hong, GAN **ao-wen, XIAO Wei, CAO Pan, QIN Wen-qing, QIU Guan-zhou, WANG Dian-zuo. Cooperative effect of chalcopyrite and bornite interactions during bioleaching by mixed moderately thermophilic culture [J]. Minerals Engineering, 2016, 95: 116–123. DOI:10.1016/j.mineng.2016.06.006.

    Article  Google Scholar 

  5. HONG Mao-xing, WANG **ng-xing, WU Ling-bo, FANG Chao-jun, HUANG **ao-tao, LIAO Rui, ZHAO Hong-bo, QIU Guan-zhou, WANG Jun. Intermediates transformation of bornite bioleaching by Leptospirillum ferriphilum and Acidithiobacillus caldus [J]. Minerals, 2019, 9: 159. DOI: 10.3390/min9030159.

    Article  Google Scholar 

  6. FANG Chao-jun, YU Shi-chao, WANG **ng-xing, ZHAO Hong-bo, QIN Wen-qing, QIU Guan-zhou, WANG Jun. Synchrotron radiation XRD investigation of the fine phase transformation during synthetic chalcocite acidic ferric sulfate leaching [J]. Minerals, 2018, 8: 461. DOI: 10.3390/min8100461.

    Article  Google Scholar 

  7. ZHAO Hong-bo, HUANG **ao-tao, HU Ming-hao, ZHANG Chen-yang, ZHANG Yi-sheng, WANG Jun, QIN Wen-qing, QIU Guan-zhou. Insights into the surface transformation and electrochemical dissolution process of bornite in bioleaching [J]. Minerals, 2018, 8: 173. DOI:10.3390/min8040173.

    Article  Google Scholar 

  8. WANG Jun, ZHU Shan, ZHANG Yan-sheng, ZHAO Hong-bo, HU Ming-hao, YANG Cong-ren, QIN Wen-qing, QIU Guan-zhou. Bioleaching of low-grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans [J]. Journal of Central South University, 2014, 21: 728–734. DOI: 10.1007/s11771-014-1995-3.

    Article  Google Scholar 

  9. ZHAO Hong-bo, WANG Jun, QIN Wen-qing, HU Ming-hao, ZHU Shan, QIU Guan-zhou. Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms [J]. Minerals Engineering, 2015, 71: 159–169. DOI: 10.1016/j.mineng.2014.10.025.

    Article  Google Scholar 

  10. YANG Bao-jun, LUO Wen, WANG **ng-xing, YU Shi-chao, GAN Min, WANG Jun, LIU Xue-duan, QIU Guan-zhou. The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution [J]. Science of the Total Environment, 2020: 139485. DOI: 10.1016/j.scitotenv. 2020.139485.

    Google Scholar 

  11. YANG Bao-jun, LIN Mo, FANG **g-hua, ZHANG Rui-yong, LUO Wen, WANG **ng-xing, LIAO Rui, WU Ling-bo, WANG Jun, GAN Min, LIU Bin, ZHANG Yi, LIU Xue-duan, QIN Wen-qing, QIU Guan-zhou. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans [J]. Science of the Total Environment, 2020, 698: 134175. DOI: 10.1016/j.scitotenv.2019.134175.

    Article  Google Scholar 

  12. ZHAO Hong-bo, WANG Jun, GAN **ao-wen, HU Ming-hao, ZHANG Er-xing, QIN Wen-qing, QIU Guanzhou. Cooperative bioleaching of chalcopyrite and silverbearing tailing by mixed moderately thermophilic culture: An emphasis on the chalcopyrite dissolution with XPS and electrochemical analysis [J]. Minerals Engineering, 2015, 81: 29–39. DOI: 10.1016/j.mineng.2015.07.015.

    Article  Google Scholar 

  13. WANG Jun, QIN Wen-qing, ZHANG Yan-sheng, YANG Cong-ren, ZHANG Jian-wen, NAI Shao-shi, SHANG He, QIU Guan-zhou. Bacterial leaching of chalcopyrite and bornite with native bioleaching microorganism [J]. Transactions of Nonferrous Metals Society of China, 2008, 18: 1468–1472. DOI: 10.1016/S1003-6326(09)60027-3.

    Article  Google Scholar 

  14. WANG Jun, ZHAO Hong-bo, QIN Wen-qing, YANG Cong-ren, QIU Guan-zhou. Investigation of interface reactions and electrochemical behaviors of chalcopyrite dissolution in different leaching mediums [J]. International Journal of Electrochemical Science, 2013, 12(8): 12590–12599.

    Google Scholar 

  15. ZHAO Hong-bo, WANG Jun, QIN Wen-qing, ZHENG **-hua, TAO Lang, GAN **ao-wen, QIU Guan-zhou. Surface species of chalcopyrite during bioleaching by moderately thermophilic bacteria [J]. Transactions of Nonferrous Metals Society of China, 2015, 25: 2725–2733. DOI: 10.1016/S1003-6326(15)63897-3.

    Article  Google Scholar 

  16. ZHAO Hong-bo, HU Ming-hao, LI Yi-ni, ZHU Shan, QIN Wen-qing, QIU Guan-zhou, WANG Jun. Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium [J]. Transactions of Nonferrous Metals Society of China, 2015, 25: 303–313. DOI: 10.1016/S1003- 6326(15)63605-6.

    Article  Google Scholar 

  17. FANG **g-hua, LIU Yong, HE Wan-li, QIN Wen-qing, QIU Guan-zhou, WANG Jun. Transformation of iron in pure culture process of extremely acidophilic microorganisms [J]. Transactions of Nonferrous Metals Society of China, 2017, 27: 1150–1155. DOI: 10.1016/S1003-6326(17)60134-1.

    Article  Google Scholar 

  18. WATLING H R. Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfatechloride and sulfatenitrate process options [J]. Hydrometallurgy, 2013, 140: 163–180. DOI: 10.1016/j.hydromet.2013.09.013

    Google Scholar 

  19. DABNEY B L, CLEMENTS W H, WILLIAMSON J L, RANVILLE J F. Influence of metal contamination and sediment deposition on benthic invertebrate colonization at the north Fork Clear Creek Superfund Site, Colorado, USA [J]. Environmental Science Technology, 2018, 52: 7072–7080. DOI: 10.1021/acs.est.7b06556.

    Article  Google Scholar 

  20. MA Li-yuan, WANG **ng-jie, LIU Xue-duan, WANG Shan-quan, WANG Hong-mei. Intensified bioleaching of chalcopyrite by communities with enriched ferrous or sulfur oxidizers [J]. Bioresource Technology, 2018, 268: 415–423. DOI: 10.1016/j.biortech.2018.08.019.

    Article  Google Scholar 

  21. WANG Jun, GAN **ao-wen, ZHAO Hong-bo, HU Ming-hao, LI Kai-yun, QIN Wen-qing, QIU Guan-zhou. Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis [J]. Minerals Engineering, 2016, 98: 264–278. DOI: 10.1016/j.mineng.2016.09.008.

    Article  Google Scholar 

  22. ZHAO Hong-bo, WANG Jun, HU Ming-hao, QIN Wen-qing, ZHANG Yan-sheng, QIU Guan-zhou. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans [J]. Bioresource Technology, 2013, 149: 71–76. DOI: 10.1016/j.biortech.2013.09.035.

    Article  Google Scholar 

  23. LI Yu-biao, YAO Yi-lun, WANG Bing, QIAN Gu-jie, LI Zhi-ming, ZHU Yang-ge. New insights into chalcopyrite leaching enhanced by mechanical activation [J]. Hydrometallurgy, 2019, 189: 105131. DOI: 10.1016/j.hydromet.2019.105131.

    Article  Google Scholar 

  24. ZHAO Hong-bo, HUANG **ao-tao, WANG Jun, LI Yi-ni, LIAO Rui, WANG **ng-xing, QIU **ao, XIONG Yu-ming, QIN Wen-qing, QIU Guan-zhou. Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite [J]. Minerals Engineering, 2017, 109: 153–161. DOI: 10.1016/j.mineng.2017.03.013.

    Article  Google Scholar 

  25. WANG Jun, HU Ming-hao, ZHAO Hong-bo, TAO Lang, GAN **ao-wen, QIN Wen-qing, QIU Guan-zhou. Wellcontrolled column bioleaching of a low-grade copper ore by a novel equipment [J]. Journal of Central South University, 2015, 22: 3318–3325. DOI: 10.1007/s11771-015-2872-4.

    Article  Google Scholar 

  26. HUANG X, ZHAO H, ZHANG Y, LIAO R, WANG J, QIN W, QIU G. A strategy to accelerate the bioleaching of chalcopyrite through the goethite process [J]. Minerals & Metallurgical Processing, 2018, 35: 171–175. DOI: 10.19150/mmp.8593.

    Article  Google Scholar 

  27. ZHAO Chun-xiao, YANG Bao-jun, WANG **ng-xing, ZHAO Hong-bo, GAN Min, QIU Guan-zhou, WANG Jun. Catalytic effect of visible light and Cd2+ on chalcopyrite bioleaching [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 1078–1090. DOI: 10.1016/s1003- 6326(20)65279-7.

    Article  Google Scholar 

  28. NIE Zhen-yuan, ZHANG Wei-wei, LIU Hong-chang, XIA **-lan, ZHU Wei, ZHANG Duo-rui, ZHENG Lei, MA Chen-yan, ZHAO Yi-dong, WEN We. Synchrotron radiation based study of the catalytic mechanism of Ag+ to chalcopyrite bioleaching by mesophilic and thermophilic cultures [J]. Minerals, 2018, 8: 382. DOI: 10.3390/min8090382.

    Article  Google Scholar 

  29. NIKOLOSKI A N, ÓMALLEY G P, BAGAS S J. The effect of silver on the acidic ferric sulfate leaching of primary copper sulfides under recycle solution conditions observed in heap leaching. Part 1: Kinetics and reaction mechanisms [J]. Hydrometallurgy, 2017, 173: 258–270. DOI: 10.1016/j.hydromet.2017.08.020.

    Google Scholar 

  30. ZHAO Hong-bo, ZHANG Yi-sheng, SUN Meng-lin, OU Peng-fei, ZHANG Yan-jun, LIAO Rui, QIU Guan-zhou. Catalytic mechanism of silver in the oxidative dissolution process of chalcopyrite: Experiment and DFT calculation [J]. Hydrometallurgy, 2019, 187: 18–29. DOI: /10.1016/j.hydromet.2019.05.002.

    Article  Google Scholar 

  31. GOMEZ E, BALLESTER A, BLAZQUEZ M L, GONZALEZ F. Silver-catalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms [J]. Hydrometallurgy, 1999, 51: 37–46. DOI: 10.1016/S0304-386X(98)00070-X.

    Article  Google Scholar 

  32. MUNOZ J A, DRESINGER D B, COOPER W C, YOUNG S K. Silver catalyzed bioleaching of low-grade copper ores. Part III: Column reactors [J]. Hydrometallurgy, 2007, 88: 35–51. DOI: 10.1016/j.hydromet.2007.04.003.

    Google Scholar 

  33. WANG Jun, LIAO Rui, TAO Lang, ZHAO Hong-bo, ZHAI Rui, QIN Wen-qing, QIU Guan-zhou. A comprehensive utilization of silver-bearing solid wastes in chalcopyrite bioleaching [J]. Hydrometallurgy, 2017, 169: 152–157. DOI: 10.1016/j.hydromet.2017.01.006.

    Article  Google Scholar 

  34. ZHAO Hong-bo, GAN **ao-wen, WANG Jun, TAO Lang, QIN Wen-qing, QIU Guan-zhou. Stepwise bioleaching of Cu-Zn mixed ores with comprehensive utilization of silver-bearing solid waste through a new technique process [J]. Hydrometallurgy, 2017, 171: 374–386. DOI: 10.1016/j.hydromet.2017.06.002.

    Article  Google Scholar 

  35. GHAHREMANINEZHAD A, RADZINSKI R, GHEORGHIU T, DIXON D G, ASSELIN E. A model for silver ion catalysis of chalcopyrite (CuFeS2) dissolution [J]. Hydrometallurgy, 2015, 155: 95–104. DOI: 10.1016/j.hydromet.2015.04.011.

    Article  Google Scholar 

  36. MILLER J, PORTILLO H. In silver catalysis in ferric sulphate leaching of chalcopyrite [C]//13th International Mineral Processing Congress: Part A. Amsterdam: Elsevier, 1979: 851–901.

    Google Scholar 

  37. HIROYOSHI N, ARAI M, MIKI H, TSUNEKAWA M, HIRAJIMA T. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions [J]. Hydrometallurgy, 2002, 63: 257–267. DOI: 10.1016/S0304-386X(01)00228-6.

    Article  Google Scholar 

  38. CÃRDOBA E M, MUNOZ J A, BLAZQUEZ M L, GONZALEZ F, BALLESTER A. Leaching of chalcopyrite with ferric ion. Part III: Effect of redox potential on the silver-catalyzed process [J]. Hydrometallurgy, 2008, 93: 97–105. DOI: 10.1016/j.hydromet.2007.11.006.

    Google Scholar 

  39. WANG M, ZHANG Y, DENG T, WANG K. Kinetic modeling for the bacterial leaching of chalcopyrite catalyzed by silver ions [J]. Minerals Engineering, 2004, 17: 943–947. DOI: 10.1016/j.mineng.2003.11.021.

    Article  Google Scholar 

  40. CORDOBA E M, MUNOZ J A, BLAZQUEZ M L, GONZALEZ F, BALLESTER A. Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential [J]. Hydrometallurgy, 2008, 93: 88–96. DOI: 10.1016/j.hydromet. 2008.04.016.

    Google Scholar 

  41. LEVENSPIEL O. Chemical reaction engineering [M]. 3rd edition. New York: John Wiley & Sons Incorporation, 1999.

    Book  Google Scholar 

  42. BEVILAQUA D, LAHTI-TOMMILA H, GARCIA O Jr, PUHAKKA J A, TUOVINEN O H. Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22 °C [J]. International Journal of Mineral Processing, 2014, 132: 1–7. DOI: 10.1016/j.minpro.2014.08.008.

    Article  Google Scholar 

  43. ZHAO Hong-bo, WANG Jun, YANG Cong-ren, HU Ming-hao, GAN **ao-wen, TAO Lang, QIN Wen-qing, QIU Guan-zhou. Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: An emphasis on solution compositions [J]. Hydrometallurgy, 2015, 151: 141–150. DOI: 10.1016/j.hydromet.2014.11.009.

    Article  Google Scholar 

  44. ZHAO Hong-bo, WANG Jun, GAN **ao-wen, HU Ming-hao, TAO Lang, QIN Wen-qing, QIU Guan-zhou. Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redox potential [J]. Hydrometallurgy, 2016, 164: 159–165. DOI: 10.1016/j.hydromet.2016.04.013

    Article  Google Scholar 

  45. ZHAO Hong-bo, WANG Jun, GAN **ao-wen, ZHENG **-hua, TAO Lang, HU Ming-hao, LI Yi-ni, QIN Wen-qing, QIU Guan-zhou. Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum [J]. Bioresource Technology, 2015, 194: 28–35. DOI: 10.1016/j.biortech.2015.07.003.

    Article  Google Scholar 

  46. CORDOBA E M, MUNOZ J A, BLAZQUEZ M L, GONZALEZ F, BALLESTER A. Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria [J]. Hydrometallurgy, 2008, 93: 106–115. DOI: 10.1016/j.hydromet.2007.11.005.

    Google Scholar 

  47. VILCAEZ J, SUTO K, INOUE C. Bioleaching of chalcopyrite with thermophiles: TemperaturepHORP dependence [J]. International Journal of Mineral Processing, 2008, 88: 37–44. DOI: 10.1016/j.minpro.2008.06.002.

    Article  Google Scholar 

  48. DREISINGER D, ABED N. A fundamental study of the reductive leaching of chalcopyrite using metallic iron part I: Kinetic analysis [J]. Hydrometallurgy, 2002, 66: 37–57. DOI: 10.1016/S0304-386X(02)00079-8.

    Article  Google Scholar 

  49. GHAHREMANINEZHAD A, DIXON D G, ASSELIN E. Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution [J]. Electrochimica Acta, 2013, 87: 97–112. DOI: 10.1016/j.electacta.2012.07.119.

    Article  Google Scholar 

  50. WU Z H, DREISINGER D B, URCH H, FASSBENDER S. The kinetics of leaching galena concentrates with ferric methanesulfonate solution [J]. Hydrometallurgy, 2014, 142: 121–130. DOI: 10.1016/j.hydromet.2013.10.017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang  (王军).

Additional information

Foundation item: Project(2018JJ1041) supported by the Natural Science Foundation of Hunan, China; Projects(51774332, U1932129, 51804350 and 51934009) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, R., Wang, Xx., Yang, Bj. et al. Catalytic effect of silver-bearing solid waste on chalcopyrite bioleaching: A kinetic study. J. Cent. South Univ. 27, 1395–1403 (2020). https://doi.org/10.1007/s11771-020-4375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4375-1

Keywords

关键词

Navigation