Log in

Parallel hesitant fuzzy C-means algorithm to image segmentation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Hesitant fuzzy information allows clustering data with multiple possible membership values for a single item in a reference set. Hesitant fuzzy sets have been applied in many decision-making problems, obtaining better results against others kinds of fuzzy sets. So, in this paper a method for image segmentation based on the hesitant fuzzy set theory is investigated. Additionally, processing time is sped up with a hardware-level parallelization technique using OpenMP. Comparing the experimental results, it can be seen that the segmentation by the propose algorithm is superior, compared to some of the state of the art. The most striking feature to emerge from this algorithm is its ability to preserve the details of the boundaries of the region, in addition to the fact that the regions are more homogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gonzalez, R.C., Woods, R.E., et al.: Digital image processing (2002)

  2. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Berlin (2010)

    MATH  Google Scholar 

  3. Tuan, T.M., Fujita, H., Dey, N., Ashour, A.S., Ngoc, V.T.N., Chu, D.T.: Dental diagnosis from X-ray images: an expert system based on fuzzy computing. Biomed. Signal Process. Control 39, 64–73 (2018)

    Article  Google Scholar 

  4. Sriwastwa, A., Prakash, S., Swarit, S., Kumari, K., & Sahu, S.S. (2018). Detection of pests using color based image segmentation. : 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 1393–1396. IEEE

  5. Kavitha, P.K., Vidhya Saraswathi, P.: Content based satellite image retrieval system using fuzzy clustering. J. Ambient Intell. Humaniz. Comput. 1–12 (2020)

  6. Lei, T., Jia, X., Zhang, Y., He, L., Meng, H., Nandi, A.K.: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 26(5), 3027–3041 (2018)

    Article  Google Scholar 

  7. Hu, G., Du, Z.: Adaptive kernel-based fuzzy c-means clustering with spatial constraints for image segmentation. Int. J. Pattern Recognit. Artif. Intell. 33(01), 1954003 (2019)

    Article  Google Scholar 

  8. Zhang, Y., Bai, X., Fan, R., Wang, Z.: Deviation-sparse fuzzy c-means with neighbor information constraint. IEEE Trans. Fuzzy Syst. 27(1), 185–199 (2018)

    Article  Google Scholar 

  9. Zhang, Z., Song, J.: An adaptive fuzzy level set model with local spatial information for medical image segmentation and bias correction. IEEE Access 7, 27322–27338 (2019)

    Article  Google Scholar 

  10. Wu, C., Chen, Y.: Adaptive entropy weighted picture fuzzy clustering algorithm with spatial information for image segmentation. Appl. Soft Comput. 86, 105888 (2020)

    Article  Google Scholar 

  11. Wu, C., Yang, X.: Robust credibilistic fuzzy local information clustering with spatial information constraints. Digit. Signal Proc. 97, 102615 (2020)

    Article  Google Scholar 

  12. Lei, T., Jia, X., Zhang, Y., Liu, S., Meng, H., Nandi, A.K.: Superpixel-based fast fuzzy C-means clustering for color image segmentation. IEEE Trans. Fuzzy Syst. 27(9), 1753–1766 (2018)

    Article  Google Scholar 

  13. Wu, C., Zhang, L., Zhang, H., & Yan, H.: Improved superpixel-based fast fuzzy C-means clustering for image segmentation. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1455–1459. IEEE (2019)

  14. Lei, T., Liu, P., Jia, X., Zhang, X., Meng, H., Nandi, A.K.: Automatic fuzzy clustering framework for image segmentation. Institute of Electrical and Electronics Engineers (IEEE) (2019)

  15. Jia, X., Lei, T., Du, X., Liu, S., Meng, H., Nandi, A.K.: Robust self-sparse fuzzy clustering for image segmentation. IEEE Access 8, 146182–146195 (2020)

    Article  Google Scholar 

  16. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  17. Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, vol. 4. Springer, Berlin (1999)

    Book  Google Scholar 

  18. De Oliveira, J.V., Pedrycz, W. (eds.): Advances in Fuzzy Clustering and Its Applications. Wiley, Hoboken (2007)

    Google Scholar 

  19. Liao, H., Xu, Z.: Hesitant Fuzzy Decision Making Methodologies and Applications. Springer, Singapore (2017)

    Book  Google Scholar 

  20. Xu, Z.: Hesitant Fuzzy Sets Theory, p. 314. Springer, Berlin (2014)

    Book  Google Scholar 

  21. Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. In. IEEE International Conference on Fuzzy Systems, 2009, pp. 1378–1382 (2009)

  22. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    MATH  Google Scholar 

  23. Schmidt, B., Gonzalez-Dominguez, J., Hundt, C., Schlarb, M.: Parallel Programming: Concepts and Practice. Morgan Kaufmann, Burlington (2017)

    Google Scholar 

  24. **a, M.M., Xu, Z.S.: Studies on the aggregation of intuitionistic fuzzy and hesitant fuzzy information. Int. J. Intell. Syst. 26, 26 (2011)

    Google Scholar 

  25. **a, M., Xu, Z.: Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 52(3), 395–407 (2011)

    Article  MathSciNet  Google Scholar 

  26. Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35(2), 183–238 (1993)

    Article  MathSciNet  Google Scholar 

  27. Combalia, M., Codella, N.C., Rotemberg, V., Helba, B., Vilaplana, V., Reiter, O., Halpern, A.C., Puig, S., Malvehy, J.: Bcn20000: dermoscopic lesions in the wild. ar**v preprint ar**v:1908.02288 (2019)

  28. Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictionary. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1. vol. 2, pp. 1800–1807. IEEE (2005)

  29. Criminisi, A. (2004). Microsoft research Cambridge object recognition image database

  30. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Meas. Ecol. Stat. 2, 416–423 (2002)

    Google Scholar 

  31. Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)

    Article  Google Scholar 

  32. Meilă, M.: Comparing clusterings-an information based distance. J. Multivar. Anal. 98(5), 873–895 (2007)

    Article  MathSciNet  Google Scholar 

  33. Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet another survey on image segmentation: region and boundary information integration. In: European Conference on Computer Vision, pp. 408–422, Springer (2002)

Download references

Acknowledgements

The authors are grateful to the editors and the reviewers for their valuable comments. the authors thank the CONACYT, TecNM/CENIDET for their support of this research through the project “Clasificador para detectar fibrilación auricular en señales electrocardiográficas utilizando una red recurrente profunda entrenada con momentos de tiempo-frecuencia”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Mújica-Vargas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vela-Rincón, V.V., Mújica-Vargas, D. & de Jesus Rubio, J. Parallel hesitant fuzzy C-means algorithm to image segmentation. SIViP 16, 73–81 (2022). https://doi.org/10.1007/s11760-021-01957-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-01957-8

Keywords

Navigation