Log in

Accessing Monomers, Surfactants, and the Queen Bee Substance by Acrylate Cross-Metathesis of Long-Chain Alkenones

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Polyunsaturated long-chain alkenones are a unique class of lipids biosynthesized in significant quantities (up to 20% of cell carbon) by several algae including the industrially grown marine microalgae Isochrysis. Alkenone structures are characterized by a long linear carbon chain (35–40 carbons) with one to four trans double bonds and terminating in a methyl or ethyl ketone. Alkenones were extracted and isolated from commercially obtained Isochrysis biomass and then subjected to cross-metathesis (CM) with methyl acrylate or acrylic acid using the Hoveyda–Grubbs metathesis initiator. Within 1 h at room temperature alkenones were consumed; however, complete fragmentation (i.e., conversion to the smallest subunits by double bond cleavage) required up to 16 h. Analysis of the reaction mixture by gas chromatography and comprehensive two-dimensional gas chromatography revealed a predictable product mixture consisting primarily of long-chain (mostly C17) acids (or methyl esters from CM with methyl acrylate) and diacids (or diesters), along with smaller amounts (~5%) of the honey bee “queen substance” (E)-9-oxo-decenoic acid. Together, these compounds comprise a diverse mixture of valuable chemicals that includes surfactants, monomers, and an agriculturally relevant bee pheromone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Solomon S, Daniel JS, Sanford TJ, Murphy DM, Plattner G-K, Knutti R, Friedlingstein P (2010) Persistence of climate changes due to a range of greenhouse gases. Proc Natl Acad Sci 107:18354–18359

    Article  CAS  Google Scholar 

  2. Ragauskas J, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  3. Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) The renewable chemicals industry. ChemSusChem 1:283–289

    Article  CAS  Google Scholar 

  4. Inderwildi OR, King DA (2009) Quo vadis biofuels. Energy Environ Sci 2:343–346

    Article  CAS  Google Scholar 

  5. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  6. Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed 50:10502–10509

    Article  Google Scholar 

  7. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  8. Borowitzka MA (1986) Microalgae as sources of fine chemicals. Microbio Sci 12:372–375

    Google Scholar 

  9. Volkman JK, Eglinton G, Corner EDS (1980) Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochem 19:2619–2622

    Article  Google Scholar 

  10. Epstein BL, D’Hondt S, Quinn JG, Zhang J, Hargraves P (1998) An effect of dissolved nutrient concentrations on alkenone-based temperature estimates. Paleoceanography 13:122–126

    Article  Google Scholar 

  11. Prahl FG, Wolfe GV, Sparrow MA (2003) Physiological impacts on alkenone paleothermometry. Paleoceanogaphy 18:1025–1031

    Google Scholar 

  12. Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis Galbana and Emiliania Huxleyi. J Phycol 41:1000–1009

    Article  CAS  Google Scholar 

  13. Volkman JK, Everitt DA, Allen DI (1986) Some analyses of lipid classes in marine organisms, sediments and seawater using thin-layer chromatography-flame ionisation detection. J Chromatogr A 356:47–162

    Article  Google Scholar 

  14. Isochrysis can be purchased from Reed Mariculture (2016) (San Jose, CA) at: http://reedmariculture.com and Necton SA (Olhão, Portugal) at: http://www.phytobloom.com. Accessed 11 Nov 2016

  15. O’Neil GW, Knothe G, Williams JR, Burlow NP, Culler AR, Corliss JM, Carmichael CA, Reddy CM (2014) Synthesis and analysis of an alkenone-free biodiesel from Isochrysis sp. Energy Fuels 28:2677–2683

    Article  Google Scholar 

  16. Liu H, Cheng T, **an M, Cao Y, Fang F, Zou H (2014) Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals. Biotechnol Adv 32:382–389

    Article  CAS  Google Scholar 

  17. Warwel S, Brüse F, Demes C, Kunz M, Rusch gen Klaas MR (2001) Polymers and surfactants on the basis of renewable resources. Chemosphere 43:39–48

    Article  CAS  Google Scholar 

  18. O’Neil GW, Culler AR, Williams JR, Burlow NP, Gilbert GJ, Carmichael CA, Nelson RK, Swarthout RF, Reddy CM (2015) Production of jet fuel range hydrocarbons as a coproduct of algal biodiesel by butenolysis of long-chain alkenones. Energy Fuels 29:922–930

    Google Scholar 

  19. Rybak A, Meier MAR (2007) Cross-metathesis of fatty acid derivatives with methyl acrylate: renewable raw materials for the chemical industry. Green Chem 9:1356–1361

    Article  CAS  Google Scholar 

  20. Dixneuf PH, Bruneau C, Fischmeister C (2016) Alkene metathesis catalysis: a key for transformations of unsaturated plant oils and renewable derivatives. Oil Gas Sci Technol Rev 71:19

    Article  Google Scholar 

  21. Griffin WC (1949) Classification of surface-active agents by HLB. J Soc Cosmet Chem 1:311–326

    Google Scholar 

  22. Maag H (1984) Fatty acid derivatives: important surfactants for household, cosmetic and industrial purposes. J Am Oil Chem Soc 61:259–267

    Article  CAS  Google Scholar 

  23. Montero de Espinosa L, Meier MAR (2011) Plant oils: the perfect renewable resource for polymer science? Eur Polym J 47:837–852

    Article  CAS  Google Scholar 

  24. Gary NE (1962) Chemical mating attractants in the queen honey bee. Science 136:773–774

    Article  CAS  Google Scholar 

  25. Koeniger N, Koeniger G (2000) Reproductive isolation among species of the genus Apis. Apidologie 31:313–319

    Article  Google Scholar 

  26. Nagaraja N, Brockmann A (2009) Drones of the dwarf honey bee Apis florea are attracted to (2E)-9-oxodecenoic acid and (2E)-10-hydroxydecenoic acid. J Chem Ecol 35:653–655

    Article  CAS  Google Scholar 

  27. Winston ML, Slessor KN (1993) Applications of queen honey bee mandibular pheromone for beekee** and crop pollination. Bee World 74:111–128

    Article  Google Scholar 

  28. O’Neil GW, Williams JR, Wilson-Peltier J, Knothe G, Reddy CM (2016) Experimental protocol for biodiesel production with isolation of alkenones as coproducts from commercial Isochrysis algal biomass. J Vis Exp 112:e54189

    Google Scholar 

  29. Conte MH, Thompson A, Lesley D, Harris RP (1998) Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica. Geochim Cosmochim Acta 62:51–68

    Article  CAS  Google Scholar 

  30. Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133

    Article  CAS  Google Scholar 

  31. Marlowe IT, Brassell SC, Eglinton G, Green JC (1984) Long chain unsaturated ketones and esters in living algae and marine sediments. Org Geochem 6:135–141

    Article  CAS  Google Scholar 

  32. Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330:367–369

    Article  CAS  Google Scholar 

  33. Eglinton G, Bradshaw SA, Rosell A, Sarnthein M, Pflaumann U, Tiedemann R (1992) Molecular record of secular sea surface temperature changes on 100-year timescales for glacial terminations I, II and IV. Nature 356:423–426

    Article  Google Scholar 

  34. Müller PJ, Kirst G, Ruhland G, von Storch I, Rosell-Melé A (1998) Calibration of the alkenone paleotemperature index U37 K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochim Cosmochim Acta 62:1757–1772

    Article  Google Scholar 

  35. Volkman JK, Barrerr SM, Blackburn SI, Sikes EL (1995) Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochim Cosmochim Acta 59:513–520

    Article  CAS  Google Scholar 

  36. World Weather Online (2016) Olhão monthly climate average. https://us.worldweatheronline.com/v2/weather-averages.aspx?locid=2005567&root_id=1996459&wc=local_weather&map=~/olhao-weather-averages/faro/pt.aspx. Accessed 10 Nov 2016

  37. Trzaskowski J, Quinzler D, Bährle C, Mecking S (2011) Aliphatic long-chain C20 polyesters from olefin metathesis. Macromol Rapid Commun 32:1352–1356

    Article  CAS  Google Scholar 

  38. Reddy CM, Eglinton TI, Hounshell A, White H, Li Xu, Gaines RB, Frysinger GS (2002) The West Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments. Environ Sci Technol 36:4754–4760

    Article  CAS  Google Scholar 

  39. O’Neil GW, Nelson RK, Wright AM, Reddy CM (2016) A one-pot/single-analysis approach to substrate scope investigations using comprehensive two-dimensional gas chromatography (GC × GC). J Org Chem 81:3533–3541

    Article  Google Scholar 

  40. Gros J, Nabi D, Wu B, Wick LY, Brussard CPD, Huisman J, van der Meer JR, Reddy CM, Arey JS (2014) First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water. Environ Sci Technol 48:9400–9411

    Article  CAS  Google Scholar 

  41. Labana SS (1997) Chemistry and properties of cross-linked polymers. Academic, New York

    Google Scholar 

  42. Hong SH, Day MW, Grubbs RH (2004) Decomposition of a key intermediate in ruthenium-catalyzed olefin metathesis reactions. J Am Chem Soc 126:7414–7415

    Article  CAS  Google Scholar 

  43. Jenkins RW, Sargeant LA, Whiffin FM, Santomauro F, Kaloudis D, Mozzanega P, Bannister CD, Baena S, Chuck CJ (2015) Cross-metathesis of microbial oils for the production of advanced biofuels and chemicals. ACS Sustainable Chem Eng 3:1526–1535

    Article  CAS  Google Scholar 

  44. Jida M, Betti C, Schiller SW, Tourwé D, Ballet S (2014) One-pot isomerization-cross metathesis–reduction (ICMR) synthesis of lipophilic tetrapeptides. ACS Comb Sci 16:342–351

    Article  CAS  Google Scholar 

  45. Schmidt B, Hauke S (2013) Cross metathesis of allyl alcohols: how to suppress and how to promote double bond isomerization. Org Biomol Chem 11:4194–4206

    Article  CAS  Google Scholar 

  46. Hong SH, Sanders DP, Lee CW, Grubbs RH (2005) Prevention of undesirable Isomerization during olefin metathesis. J Am Chem Soc 127:17160–17161

    Article  CAS  Google Scholar 

  47. Patel J, Elaridi J, Jackson WR, Robinson AJ, Serelis AK, Such C (2005) Cross-metathesis of unsaturated natural oils with 2-butene. High conversion and productive catalyst turnovers. Chem Commun 2005:5546–5547

    Article  Google Scholar 

  48. Chatterjee AK, Choi T-L, Sanders DP, Grubbs RH (2003) A general model for selectivity in olefin cross-metathesis. J Am Chem Soc 125:11360–11370

    Article  CAS  Google Scholar 

  49. Segev E, Castañeda IS, Sikes EL, Vlamakis H, Kolter R (2016) Bacterial influence on alkenones in live microalgae. J Phycol 52:125–130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CHE-1151492) and through a private donation from friends of WHOI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory W. O’Neil.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material GC × GC data (PDF 2273 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Neil, G.W., Williams, J.R., Craig, A.M. et al. Accessing Monomers, Surfactants, and the Queen Bee Substance by Acrylate Cross-Metathesis of Long-Chain Alkenones. J Am Oil Chem Soc 94, 831–840 (2017). https://doi.org/10.1007/s11746-017-2997-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-017-2997-8

Keywords

Navigation