Log in

Fatty and Volatile Oils of the Gypsywort Lycopus europaeus L. and the Gaussian-Like Distribution of its Wax Alkanes

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

The detailed analyses of the volatile essential oil and lipid profiles of the aerial parts from the blooming and fruit-forming stages of both ripe and unripe fruit of Lycopus europaeus (Lamiaceae) are presented. Both of these profiles are distinguished by components with a restricted occurrence in the Plant Kingdom. These rare compounds include (E)-hotrienol in the volatiles, numerous unusual fatty acids (such as very long chain, odd-numbered and branched-chain) in the bound lipids and a high amount of iso- and anteiso-alkanes in the epicuticular waxes. Furthermore, a Gaussian-like distribution of the relative amounts of the epicuticular wax alkanes was observed. These normal distributions could be interpreted as the end result of the work of elongase enzyme systems where the Gaussian parameter μ should match the length of the “ideal” fatty acid biosynthesised and σ would represent the error of this enzyme system. These curve parameters were shown to have a close relationship with ACL and CPI values usually utilised to describe the natural distribution of wax alkanes. The screening of L. europaeus essential oil for its in vitro antimicrobial activity showed that this oil possesses selectivity towards two gram-negative strains, E. coli and K. pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bucar F, Kartnig T, Paschek G, Winker E, Schubert-Zsilavecz M (1995) Flavonoid glycosides from Lycopus europaeus. Planta Med 61:489

    Article  CAS  Google Scholar 

  2. Fecka I, Cisowski W (1999) Multiple gradient development TLC in analysis of complex phenolic acids from Lycopus europaeus. Chromatographia 49:256–260

    Article  CAS  Google Scholar 

  3. Radulović N, Denić M, Stojanović-Radić Z (2010) Antimicrobial phenolic abietane diterpene from Lycopus europaeus L. (Lamiaceae). Bioorg Med Chem Lett 20:4988–4991

    Article  Google Scholar 

  4. Vermeulen N (2006) The complete encyclopedia of herbs, 3rd edn. Rebo International b.v, Lisse

    Google Scholar 

  5. Beer AM, Wiebelitz KR, Schmidt-Gayk H (2008) Lycopus europaeus (Gypsywort): Effects on the thyrodial paramethers and symptoms associated with thyroid function. Phytomedicine 15:16–22

    Article  Google Scholar 

  6. Vonhoff C, Baumgartner A, Hegger M, Korte B, Biller A, Winterhoff H (2006) Extract of Lycopus europaeus L. reduces cardiac signs of hyperthyroidism in rats. Life Sci 78:1063–1070

    Article  CAS  Google Scholar 

  7. Hussein AA, Rodriguez B, de la Paz Martínez-Alcázar M, Cano FH (1999) Diterpenoids from Lycopus europaeus and Nepeta septemcrenata: revised structures and new isopimarane derivatives. Tetrahedron 55:7375–7388

  8. Jeremić D, Macura S, Milosavljević S, Vajs V (1985) A novel pimara-8(9),15-diene from Lycopus europaeus. Tetrahedron 41:357–364

    Article  Google Scholar 

  9. Milosavljević S, Jeremić D, Macura S, Vajs V (1986) A novel tetraoxygenated ∆ 8(9),15-pimaric acid methyl ester from Lycopus europaeus. Part II. Croat Chem Acta 58:399–405

    Google Scholar 

  10. Hussein AA, Rodriguez B (2000) Isopimarane diterpenoids from Lycopus europaeus. J Nat Prod 63:419–421

    Article  CAS  Google Scholar 

  11. Gibbons S, Oluwatuyi M, Veitch NC, Gray AI (2003) Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry 62:83–87

    Article  CAS  Google Scholar 

  12. Lotti G, Averna V (1969) Seed lipids of water plants. Riv Ital Sostanze Gr 46:668–672

    CAS  Google Scholar 

  13. Kozlowski J, Dedio I, Krzyzaniak M (1998) Content and composition of oils in the diaspores of some species of medicinal plants from the family Labiatae. Herba Pol 44:161–164

    CAS  Google Scholar 

  14. Maffei M (1994) Discriminant analysis of leaf wax alkanes in the Lamiaceae and four other plant families. Biochem System Eco 22:711–728

    Article  CAS  Google Scholar 

  15. Sharipov ShN, Goryaev MI, Khazanovich RL, Pulatova TP, Sharipova FS (1969) Essential oil from Lycopus europaeus. Khim Prir Soedin 5:316

    Google Scholar 

  16. Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–471

    Article  Google Scholar 

  17. Adams RP (2007) Identification of essential oil components by gas chromatography and mass spectrometry, 4th edn. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  18. Stedman RL (1968) Chemical composition of tobacco and tobacco smoke. Chem Rev 68:153–207

    Article  CAS  Google Scholar 

  19. Zaikin VG, Borisov RS (2002) Chromatographic–mass spectrometric analysis of Fischer–Tropsch synthesis products. J Anal Chem 57:653–660

    Google Scholar 

  20. Clinical and Laboratory Standards Institute (2003) Performance standards for antimicrobial susceptibility testing. Eleventh informational supplement. Document M 100-S11, NCCLS, Wayne, PA, USA

  21. Sartoratto A, Machado ALM, Delarmelina C, Figueira GM, Duarte MCT, Rehder VLG (2004) Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz J Microbiol 35:275–280

    Article  CAS  Google Scholar 

  22. Yuasa Y, Yasushi K (2003) A practical and convenient synthesis of hotrienol, an excellent fruity smelling compound. J Agric Food Chem 51:4036–4039

    Article  CAS  Google Scholar 

  23. Schwab W, Mahr C, Schreier P (1989) Studies on the enzymic hydrolysis of bound aroma components from Carica papaya fruit. J Agric Food Chem 37:1009–1012

    Article  CAS  Google Scholar 

  24. Praczko A, Gora J (2001) Free and glycosidic aroma compounds in inflorescences of Tilia cordata Mill. Herba Pol 47:191–202

    CAS  Google Scholar 

  25. Fitsiou I, Tzakou O, Hancianu M, Poiata A (2007) Volatile constituents and antimicrobial activity of Tilia tomentosa Moench and Tilia cordata Miller oils. J Essent Oil Res 19:183–185

    Article  CAS  Google Scholar 

  26. Yoshitaka U, Seiji H, Hiromichi N, Kiyoshi F (1990) The volatile constituents of the flower concrete of Chimonanthus praecox Link from China. Flavour Frag J 5:85–88

    Article  Google Scholar 

  27. Andrade MS, Sampaio TS, Nogueira PCL, Ribeiro AS, Bittrich V, Amaral MCE (2007) Volatile compounds from leaves and flowers of Garcinia macrophylla. Chem Nat Compd 43:221–224

    Google Scholar 

  28. Reddy CM, Eglinton TI, Palić R, Benitez-Nelson BC, Stojanović G, Palić I, Djordjević S, Eglinton G (2000) Even carbon number predominance of plant wax n-alkanes: a correction. Org Geochem 31:331–336

    Article  CAS  Google Scholar 

  29. Kavouras IG, Stratigakas N, Stephanou EG (1998) Iso- and anteiso-alkanes: specific tracers of environmental tobacco smoke in indoor and outdoor particle-size distributed urban aerosols. Environ Sci Technol 32:1369–1377

    Article  CAS  Google Scholar 

  30. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1994) Sources of fine organic aerosol 6. Cigarette smoke in the urban atmosphere. Environ Sci Technol 28:1375–1388

    Article  CAS  Google Scholar 

  31. Shepherd T, Griffiths DW (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    Article  CAS  Google Scholar 

  32. You** Z, Grice K, Stuart-Williams H, Farquhar GD, Hocart CH, Lu H, Liu W (2010) Biosynthetic origine of the saw-toothed profile in δ 13C and δ 2H of n-alkanes and systematic differences between n-, iso- and anteiso-alaknes in leaf waxes of land plants. Phytochemistry 71:388–403

    Article  Google Scholar 

  33. Tsydendambaev VD, Christie WW, Brechany EY, Vereshchagin AG (2004) Identification of unusual fatty acids of four alpine plant species from the Pamirs. Phytochemistry 65:2695–2703

    Article  CAS  Google Scholar 

  34. Thies W (1995) Determination of the petroselinic acid in seeds of Coriandrum sativum by gas liquid chromatography as n-butyl esters. Lipid/Fett 97:411–413

    Article  CAS  Google Scholar 

  35. Řezanka T, Sigler K (2009) Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Prog Lipid Res 48:206–238

    Article  Google Scholar 

  36. Mongrand S, Badoc A, Patouille B, Lacomblez C, Chavent M, Cassagne C, Bessoule JJ (2001) Taxonomy of gymnospermae: multivariate analyses of leaf fatty acid composition. Phytochemistry 58:101–115

    Article  CAS  Google Scholar 

  37. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302

    CAS  Google Scholar 

  38. Mastronicolis SK, Arvanitis N, Karaliota A, Litos C, Stavroulakis G, Moustaka H, Tsakirakis A, Heropoulos G (2005) Cold dependence of fatty acid profile of different lipid structures of Listeria monocytogenes. Food Microbiol 22:213–219

    Article  CAS  Google Scholar 

  39. Howell DC (2008) Fundamental statistics for the behavioral sciences, 6th edn. Thomson Wadsworts, Belmonth

    Google Scholar 

  40. Post-Beittenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol 47:405–430

    Article  CAS  Google Scholar 

  41. Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727

    Article  CAS  Google Scholar 

  42. Denic V, Weissman JS (2007) A molecular caliper mechanism for determining very long-chain fatty acid length. Cell 130:663–677

    Article  CAS  Google Scholar 

  43. Palić R, Eglinton E, Benitez-Nelson BC, Eglinton G, Veličković J, Stojanović G (1999) Alkanes from plants of the genus Achillea. J Serb Chem Soc 64:443–446

    Google Scholar 

  44. Petitjean D, Schmitt JF, Laine V, Cunat C, Dirand M (2010) Influence of the alkane molar distribution on the physical properties of synthetic waxes. Energy Fuel 24:3028–3033

    Article  CAS  Google Scholar 

  45. Petitjean D, Schmitt JF, Laine V, Bouroukba M, Cunat C, Dirand M (2008) Presence of isoalkanes in waxes and their influence on their physical properties. Energy Fuel 22:697–701

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work by the Ministry of Education and Science of Serbia is gratefully acknowledged (project no. 172061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Radulović.

About this article

Cite this article

Radulović, N., Denić, M., Stojanović-Radić, Z. et al. Fatty and Volatile Oils of the Gypsywort Lycopus europaeus L. and the Gaussian-Like Distribution of its Wax Alkanes. J Am Oil Chem Soc 89, 2165–2185 (2012). https://doi.org/10.1007/s11746-012-2118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-012-2118-7

Keywords

Navigation