Log in

Lipase-catalyzed alcoholysis of triglycerides for short-chain monoglyceride production

  • Published:
Journal of the American Oil Chemists' Society

Abstract

Lipase from Pseudomonas fluorescens efficiently catalyzed the alcoholysis of various TG in dry alcohols. For TG with short-chain FA, more MG were accumulated. The yields of MG were affected by the alcohols used. The maximum yields of MG were as follows: 85% for monoacetin in n-butanol, 96% for monobutyrin in ethanol or n-butanol, 50% for monocaprylin in n-butanol, 48% for monolaurin in isopropanol, and 45% for monopalmitin in isopropanol. The MG produced were judged to be 2-MG by TLC analysis. The presence of organic cosolvent affected the reaction rate of the lipase-catalyzed alcoholysis of TG. For the alcoholysis of various TG in ethanol and cosolvent (1∶1, vol/vol), the rates had the following orders: (i) for tributyrin, hexane > toluene > acetone > ethyl acetate > chloroform > acetonitrile > pyridine; (ii) for tricaprylin, hexane > acetone > toluene > acetonitrile > ethyl acetate > pyridine > chloroform; and (iii) for trialurin, hexane > acetonitrile=acetone > ethyl acetate > pyridine=chloroform > toluene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcos, J.A., and C. Otero, Enzyme, Medium, and Reaction Engineering to Design a Low-Cost, Selective Production Method for Mono- and Dioleoylglycerols, J. Am. Oil Chem. Soc. 73:673–682 (1996).

    Article  CAS  Google Scholar 

  2. Bornscheuer, U.T., Lipase-Catalyzed Syntheses of Monoacylglycerols, Enzyme Microb. Technol. 17:578–586 (1995).

    Article  CAS  Google Scholar 

  3. Stutz, R.L., A.J. del Vecchio, R.J. Tenney, and C.J. Patterson, The Role of Emulsifiers and Dough Conditioners in Foods, Food Prod. Dev. 7:52–60 (1973).

    CAS  Google Scholar 

  4. Elfman Borjesson, I., and M. Harrod, Synthesis of Monoglycerides by Glycerolysis of Rapeseed Oil Using Immobilized Lipase, J. Am. Oil Chem. Soc. 76:701–707 (1999).

    CAS  Google Scholar 

  5. Fan, H.L., Y. Chu, G.X. Yang, W. Zhang, J.L. Liu, Z.S. Wu, S.G. Cao, and D.L. You, Lipase-Catalyzed Syntheses of Monoglycerides by Hydrolysis of Soybean Oil in AOT/Isooctane Reversed Micelles, Ann. N.Y. Acad. Sci. 864:267–272 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. Hoq, M.M., T. Yamane, S. Shimizu, T. Funada, and S. Ishida, Continuous Synthesis of Glycerides by Lipase in a Microporous Membrane Bioreactor, J. Am. Oil Chem. Soc. 61:776–781 (1984).

    CAS  Google Scholar 

  7. Langone, M.A., M.E. De Abreu, M.J. Rezende, and G.L. Sant-Anna, Jr., Enzymatic Synthesis of Medium Chain Monoglycerides in a Solvent-Free System, Appl. Biochem. Biotechnol. 98–100:987–996 (2002).

    Article  PubMed  Google Scholar 

  8. Millqvist, A., P. Adlercreutz, and B. Mattiasson, Lipase-Catalyzed Alcoholysis of Triglycerides for the Preparation of 2-Monoglycerides, Enzyme Microb. Technol. 16:1042–1047 (1994).

    Article  CAS  Google Scholar 

  9. Irimescu, R., K. Furihata, K. Hata, Y. Iwasaki, and T. Yamane, Utilization of Reaction Medium-Dependent Regiospecificity of Candida antarctica Lipase (Novozym 435) for the Synthesis of 1,3-Dicapryloyl-2-docosahexaenoyl (or eicosapentaenoyl) Glycerol, J. Am. Oil Chem. Soc. 78:285–289 (2001).

    Article  CAS  Google Scholar 

  10. Irimescu, R., K. Furihata, K. Hata, Y. Iwasaki, and T. Yamane, Two-Step Enzymatic Synthesis of DHA-rich Symmetrically Structured Triacylglycerols via 2-Monoacylglycerols, Ibid., 78:473–478 (2001).

    Article  Google Scholar 

  11. Shaw, J.F., and E.T. Liaw, Preparation of Acyl Derivatives of 1-Hydroxy Aldose by Lipase-Catalyzed Hydrolysis of Alcoholysis of Fully Acylated Aldose in Organic Solvent, in Biocatalysis in Organic Media, edited by C. Laane, J. Tramper, and M.D. Lilly, Elsevier, Amsterdam, 1987, pp. 233–239.

    Google Scholar 

  12. Shaw, J.F., D.L. Wang, and Y.J. Wang, Lipase-Catalysed Ethanolysis and Isopropanolysis of Triglycerides with Long-Chain Fatty Acids, Enzyme Microb. Technol. 13:544–546 (1991).

    Article  CAS  Google Scholar 

  13. Dossat, V., D. Combes, and A. Marty, Efficient Lipase Catalysed Production of a Lubricant and Surfactant Formulation Using a Continuous Solvent-Free Process, J. Biotechnol. 97:117–124 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. Vacek, M., M. Zarevucka, Z. Wimmer, K. Stransky, M. Mackova, and K. Demnerova, Enzymatic Alcoholysis of Blackcurrant Oil, Biotechnol. Lett. 23:27–32 (2001).

    Article  CAS  Google Scholar 

  15. Coffen, D.L., Enzyme-Catalyzed Reactions, in Chiral Separations: Applications and Technology, edited by S. Ahuja, American Chemical Society, Washington, DC, 1997, pp. 59–91.

    Google Scholar 

  16. Gupta, R., N. Gupta, and P. Rathi, Bacterial Lipases: An Overview of Production, Purification and Biochemical Properties, Appl. Microbiol. Biotechnol. DOI: 10.1007/s00253-004-1568-8 (2004).

  17. Rogalska, E., C. Cudrey, F. Ferrato, and R. Verger, Stereoselective Hydrolysis of Triglycerides by Animal and Microbial Lipases, Chirality 5:24–30 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. Sugihara, Y. Shimada, and Y. Tominaga, A Novel Geotrichum candidum Lipase with Some Preference for the 2-Position on a Triglyceride Molecule, Appl. Microbiol. Biotechnol. 35:738–740 (1991).

    Article  CAS  Google Scholar 

  19. Brobst, K.M., and C.E. Lott, Determination of Some Carbohydrates in Corn Syrups by Gas Chromatography of Trimethylsilyl Derivatives, Cereal Chem. 43:35–42 (1966).

    CAS  Google Scholar 

  20. Laane, C., S. Boeren, R. Hilhorst, and C. Veeger, Optimization of Biocatalysis in Organic Media, in Biocatalysis in Organic Media, edited by C. Laane, J. Tramper, and M. D. Lilly, Elsevier, Amsterdam, 1987, pp. 65–84.

    Google Scholar 

  21. Chang, R.C., S.J. Chou, and J.F. Shaw, Multiple Forms and Functions of Candida rugosa Lipase, Biotechnol. Appl. Biochem. 19:93–97 (1994).

    CAS  Google Scholar 

  22. Barton, M.J., J.P. Hamman, K.C. Fichter, and G.J. Calton, Enzymatic Resolution of (R,S)-2-(4-hydroxyphenoxy) Propionic Acid, Enzyme Microb. Technol. 12:577–583 (1990).

    Article  CAS  Google Scholar 

  23. Shaw, J.F., C.H. Chang, and Y.J. Wang, Characterization of Three Distinct Forms of Lipolytic Enzyme in a Commercial Candida Lipase Preparation, Biotechnol. Lett. 11:779–784 (1989).

    Article  CAS  Google Scholar 

  24. Lee, G.C., S.J. Tang, K.H. Sun, and J.F. Shaw, Analysis of the Gene Family Encoding Lipases in Candida rugosa by Competitive Reverse Transcription-PCR, Appl. Environ. Microbiol. 65:3888–3895 (1999).

    PubMed  CAS  Google Scholar 

  25. Shaw, J.F., R.C. Chang, F.F. Wang, and Y.J. Wang, Lipolytic Activities of a Lipase Immobilized on Six Selected Supporting Materials, Biotechnol. Bioeng. 35:132–137 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jei-Fu Shaw.

About this article

Cite this article

Lee, GC., Wang, DL., Ho, YF. et al. Lipase-catalyzed alcoholysis of triglycerides for short-chain monoglyceride production. J Amer Oil Chem Soc 81, 533–536 (2004). https://doi.org/10.1007/s11746-006-0936-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-006-0936-1

Key Words

Navigation