Log in

Atorvastatin Decreases Stearoyl-CoA Desaturase Gene Expression in THP-1 Macrophages Incubated with Oxidized LDL

  • Original Article
  • Published:
Lipids

Abstract

Statins, inhibitors of HMG-CoA reductase, reduce plasma low-density lipoprotein (LDL) cholesterol levels decreasing the incidence of coronary events. However, the observed benefit of statins appears to extend beyond their lipid-lowering effects. Previous studies by our group have demonstrated that atorvastatin in oxidized LDL incubated macrophages modifies the gene expression profile of certain enzymes involved in fatty acid metabolism, mainly stearoyl-CoA desaturase (SCD). SCD is a rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids and its expression is mediated by sterol regulatory element-binding protein-1 (SREBP-1). The aim of this study was to determine whether atorvastatin might affect the fatty acid composition in macrophages and if their SCD gene expression profile could explain this effect. Therefore, THP-1 macrophages were treated with atorvastatin and native or oxidized LDL, their fatty acid composition was determined by gas-chromatography, and the SCD and SREBP-1 gene expression profile was analysed using quantitative RT-PCR. We found that atorvastatin reduces the percentage of palmitoleic and oleic acids in THP-1 cells incubated with oxLDL, which could be explained by the inhibition of SCD and SREBP-1 gene expression. The observed results were reversed when mevalonate was added to THP-1 macrophages. This would suggest that inhibition of SCD in THP-1 macrophages incubated with oxLDL and the change in fatty acid composition is an important effect of atorvastatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stein E, Black D (2002) Lipoprotein changes with statins. Curr Atheroscler Rep 4:14–18

    Article  PubMed  Google Scholar 

  2. Vaughan C, Gotto AJ, Basson C (2000) The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 35:1–10

    Article  PubMed  CAS  Google Scholar 

  3. Shepherd J, Barter P, Carmena R, Deedwania P, Fruchart J, Haffner S, Hsia J, Breazna A, LaRosa J, Grundy S, Waters D (2006) Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes: the treating to new targets (TNT) study. Diabetes Care 29:1220–1226

    Article  PubMed  CAS  Google Scholar 

  4. Yildirir A, Müderrisoglu H (2004) Non-lipid effects of statins: emerging new indications. Curr Vasc Pharmacol 2:309–318

    Article  PubMed  CAS  Google Scholar 

  5. Ray K, Cannon C, Ganz P (2006) Beyond lipid lowering: what have we learned about the benefits of statins from the acute coronary syndromes trials? Am J Cardiol 98:18P–25P

    Article  PubMed  CAS  Google Scholar 

  6. Davignon J (2004) Beneficial cardiovascular pleiotropic effects of statins. Circulation 109:III39–III43

    PubMed  Google Scholar 

  7. Fichtlscherer S, Schmidt-Lucke C, Bojunga S, Rössig L, Heeschen C, Dimmeler S, Zeiher A (2006) Differential effects of short-term lipid lowering with ezetimibe and statins on endothelial function in patients with CAD: clinical evidence for ‘pleiotropic’ functions of statin therapy. Eur Heart J 27:1182–1190

    Article  PubMed  Google Scholar 

  8. Ghittoni R, Napolitani G, Benati D, Ulivieri C, Uliveri C, Patrussi L, Laghi Pasini F, Lanzavecchia A, Baldari C (2006) Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases. Eur J Immunol 36:2885–2893

    Article  PubMed  CAS  Google Scholar 

  9. Casey P, Seabra M (1996) Protein prenyltransferases. J Biol Chem 271:5289–5292

    Article  PubMed  CAS  Google Scholar 

  10. Bi X, Baudry M, Liu J, Yao Y, Fu L, Brucher F, Lynch G (2004) Inhibition of geranylgeranylation mediates the effects of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors on microglia. J Biol Chem 279:48238–48245

    Article  PubMed  CAS  Google Scholar 

  11. Artieda M, Cenarro A, Junquera C, Lasierra P, Martínez-Lorenzo M, Pocoví M, Civeira C (2005) Tendon xanthomas in familial hypercholesterolemia are associated with a differential inflammatory response of macrophages to oxidized LDL. FEBS Lett 579:4503–4512

    Article  PubMed  CAS  Google Scholar 

  12. Ntambi J (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40:1549–1558

    PubMed  CAS  Google Scholar 

  13. Enoch H, Catalá A, Strittmatter P (1976) Mechanism of rat liver microsomal stearyl-CoA desaturase: studies of the substrate specificity, enzyme–substrate interactions, and the function of lipid. J Biol Chem 251:5095–5103

    PubMed  CAS  Google Scholar 

  14. Ntambi J (1995) The regulation of stearoyl-CoA desaturase (SCD). Prog Lipid Res 34:139–150

    Article  PubMed  CAS  Google Scholar 

  15. Miyazaki M, Kim Y, Ntambi J (2001) A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J Lipid Res 42:1018–1024

    PubMed  CAS  Google Scholar 

  16. Zhang L, Mia M, Zheng C, Hossain M, Yamasaki F, Tokunaga O, Kohashi O (1999) The preventive effects of incomplete Freund’s adjuvant and other vehicles on the development of adjuvant-induced arthritis in Lewis rats. Immunology 98:267–272

    Article  PubMed  CAS  Google Scholar 

  17. Shimomura I, Shimano H, Korn B, Bashmakov Y, Horton J (1998) Nuclear sterol regulatory element-binding proteins activate genes responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver. J Biol Chem 273:35299–35306

    Article  PubMed  CAS  Google Scholar 

  18. Liang G, Yang J, Horton J, Hammer R, Goldstein J, Brown M (2002) Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem 277:9520–9528

    Article  PubMed  CAS  Google Scholar 

  19. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284

    Article  PubMed  CAS  Google Scholar 

  20. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Article  Google Scholar 

  21. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  22. Christie W, Brechany E, Johnson S, Holman R (1986) A comparison of pyrrolidide and picolinyl ester derivatives for the identification of fatty acids in natural samples by gas chromatography-mass spectrometry. Lipids 21:657–661

    Article  PubMed  CAS  Google Scholar 

  23. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR, Ntambi JM (2002) Ralationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res 43:1899–1907

    Article  PubMed  CAS  Google Scholar 

  24. Risé P, Colombo C, Galli C (1997) Effects of simvastatin on the metabolism of polyunsaturated fatty acids and on glycerolipid, cholesterol, and de novo lipid synthesis in THP-1 cells. J Lipid Res 38:1299–1307

    PubMed  Google Scholar 

  25. Kew S, Banerjee T, Minihane AM, Finnegan YE, Williams CM, Calder PC (2003) Relation between the fatty acid composition of peripheral blood mononuclear cells and measures of immune cell function in healthy, free-living subjects aged 25–72 y. Am J Clin Nutr 77:1278–1286

    PubMed  CAS  Google Scholar 

  26. Risé P, Ghezzi S, Priori I, Galli C (2005) Differential modulation by simvastatin of the metabolic pathways in the n-9, n-6 and n-3 fatty acid series, in human monocytic and hepatocytic cell lines. Biochem Pharmacol 69:1095–1100

    Article  PubMed  Google Scholar 

  27. Horton J (2002) Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem Soc Trans 30:1091–1095

    Article  PubMed  CAS  Google Scholar 

  28. Tabor D, Kim J, Spiegelman B, Edwards P (1998) Transcriptional activation of the stearoyl-CoA desaturase 2 gene by sterol regulatory element-binding protein/adipocyte determination and differentiation factor 1. J Biol Chem 273:22052–22058

    Article  PubMed  CAS  Google Scholar 

  29. Tabor D, Kim J, Spiegelman B, Edwards P (1999) Identification of conserved cis-elements and transcription factors required for sterol-regulated transcription of stearoyl-CoA desaturase 1 and 2. J Biol Chem 274:20603–20610

    Article  PubMed  CAS  Google Scholar 

  30. Shimomura I, Bashmakov Y, Horton J (1999) Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem 274:30028–30032

    Article  PubMed  CAS  Google Scholar 

  31. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro J, Shimomura I, Shan B, Brown M, Goldstein J, Mangelsdorf D (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 14:2819–2830

    Article  PubMed  CAS  Google Scholar 

  32. Yoshikawa T, Shimano H, Yahagi N, Ide T, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Takahashi A, Sone H, Osuga Ji J, Gotoda T, Ishibashi S, Yamada N (2002) Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem 277:1705–1711

    Article  PubMed  CAS  Google Scholar 

  33. Bené H, Lasky D, Ntambi JM (2001) Cloning and characterization of the human stearoyl-CoA desaturase gene promoter: transcriptional activation by sterol regulatory element binding protein and repression by polyunsaturated fatty acids and cholesterol. Biochem Biophys Res Commun 284:1194–1198

    Article  PubMed  Google Scholar 

  34. Shimano H (2001) Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40:439–452

    Article  PubMed  CAS  Google Scholar 

  35. Brown M, Goldstein J (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    Article  PubMed  CAS  Google Scholar 

  36. Wang X, Sato R, Brown M, Hua X, Goldstein J (1994) SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77:53–62

    Article  PubMed  CAS  Google Scholar 

  37. Sheng Z, Otani H, Brown M, Goldstein J (1995) Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver. Proc Natl Acad Sci USA 92:935–938

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki M, Kakuta H, Takahashi A, Shimano H, Tada-Iida K, Yokoo T, Kihara R, Yamada N (2005) Effects of atorvastatin on glucose metabolism and insulin resistance in KK/Ay mice. J Atheroscler Thromb 12:77–84

    PubMed  CAS  Google Scholar 

  39. Fuhrman B, Koren L, Volkova N, Keidar S, Hayek T, Aviram M (2002) Atorvastatin therapy in hypercholesterolemic patients suppresses cellular uptake of oxidized-LDL by differentiating monocytes. Atherosclerosis 164:179–185

    Article  PubMed  CAS  Google Scholar 

  40. Li DY, Chen HJ, Mehta JL (2001) Statins inhibit oxidized-LDL-mediated LOX-1 expression, uptake of oxidized-LDL and reduction in PKB phosphorylation. Cardiovasc Res 52:130–135

    Article  PubMed  CAS  Google Scholar 

  41. Harris J, Hibbeln J, Mackey R, Muldoon M (2004) Statin treatment alters serum n-3 and n-6 fatty acids in hypercholesterolemic patients. Prostaglandins Leukot Essent Fatty Acids 71:263–269

    Article  PubMed  CAS  Google Scholar 

  42. Jula A, Marniemi J, Rönnemaa T, Virtanen A, Huupponen R (2005) Effects of diet and simvastatin on fatty acid composition in hypercholesterolemic men: a randomized controlled trial. Arterioscler Thromb Vasc Biol 25:1952–1959

    Article  PubMed  CAS  Google Scholar 

  43. Zelvyte I, Dominaitiene R, Crisby M, Janciauskiene S (2002) Modulation of inflammatory mediators and PPARgamma and NFkappaB expression by pravastatin in response to lipoproteins in human monocytes in vitro. Pharmacol Res 45:147–154

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fondo de Investigación Sanitaria [PI061238, PI061402, PI071221 and RD06/0014/0008-0029 (RECAVA)] and Ministerio de Educación y Ciencia (SAF2005-07042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Martín-Fuentes.

About this article

Cite this article

Martín-Fuentes, P., García-Otín, A.L., Calvo, L. et al. Atorvastatin Decreases Stearoyl-CoA Desaturase Gene Expression in THP-1 Macrophages Incubated with Oxidized LDL. Lipids 44, 115–123 (2009). https://doi.org/10.1007/s11745-008-3255-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-008-3255-5

Keywords

Navigation