Log in

Astonishing diversity of natural surfactants: 2. Polyether glycosidic ionophores and macrocyclic glycosides

  • Review
  • Published:
Lipids

Abstract

Polyether glycosidic ionophores and macrocyclic glycosides are of great interest, especially for the medicinal and pharmaceutical industries. These biologically active natural surfactants are good prospects for the future chemical preparation of compounds useful as antibiotics, anticancer agents, or in industry. More than 300 interesting and unusual natural surfactants are described in this review article, including their chemical structures and biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EC50 :

the median effect concentration, being a statistically-derived concentration of a substance that can be expected to cause (i) an adverse reaction in 50% of organisms or (ii) a 50% reduction in growth or in the growth rate of organisms

ED50 (effective dose50):

the amount of material required to produce a specified effect in 50% of an animal population

GI:

growth inhibition

GI50 :

the concentration needed to reduce the growth of treated cells to half that of untreated (i.e., control) cells

HSV-1:

herpes simplex virus type 1

IC:

inhibitory concentration

IC50 :

concentration at which growth or activity is inhibited by 50% (applies to ligand and growth inhibition)

%ILS:

percent increase in life span

LC50 for drugs with a cytotoxic effect:

the concentration of drug at which 50% of cells die (a 50% reduction in the measured protein at the end of the drug treatment as compared with that at the beginning)

LD50 (lethal dose50):

the dose of a chemical that kills 50% of a sample population

log IC (log EC):

IC (or EC) in a log 10 scale (a log 10 scale is frequently used when x values are a serial dilution, as a better estimate of the SE is obtained)

log GI50 :

log concentrations that reduced cell growth to 50% of the level at the start of the experiment

log10 RC50 :

root elongation half inhibition concentration (mol/L) in logarithmic form

LD:

lethal dose

LD50 :

the dose at which 50% of test subjects die

LPS:

lipopolysaccharide

MIC:

minimal inhibitory concentration

RC50 :

concentration at which there is a 50% reduction in the number of offspring as compared with controls

TRAP:

tartrate-resistant acid phosphatase

VZV:

varicella-zoster virus

References

  1. Dembitsky, V.M. (2005) Astonishing Diversity of Natural Surfactants 1. Glycosides of Fatty Acids and Alcohols, Lipids 39, 933–953.

    Article  Google Scholar 

  2. Dembitsky, V.M. (2004) Chemistry and Biodiversity of Biologically Active Natural Glycosides, Chem. Biodivers. 1, 673–781.

    Article  PubMed  CAS  Google Scholar 

  3. Kren, V., and Martinkova, L. (2001) Glycosides in Medicine: The Role of Glycosidic Residue in Biological Activity, Curr. Med. Chem. 8, 1303–1328.

    PubMed  CAS  Google Scholar 

  4. Kingston, W. (2004) Streptomycin, Schatz v. Waksman, and the Balance of Credit for Discovery, J. Hist. Med. Allied Sci. 59, 441–462.

    Article  PubMed  Google Scholar 

  5. Ng, A.W., Wasan, K.M., and Lopez-Berestein, G. (2003) Development of Liposomal Polyene Antibiotics: An Historical Perspective, J. Pharm. Pharm. Sci. 6, 67–83.

    PubMed  CAS  Google Scholar 

  6. Casnati, A., Sansone, F., and Ungaro, R. (2003) Peptido- and Glycocalixarenes: Playing with Hydrogen Bonds Around Hydrophobic Cavities, Acc. Chem. Res. 36, 246–254.

    Article  PubMed  CAS  Google Scholar 

  7. Sener, B. (ed.) (2002) Biodiversity: Biomolecular Aspects of Biodiversity and Innovative Utilization, Kluwer Academic/Plenum, New York.

    Google Scholar 

  8. Ernst, B., Hart, G.W., and Sinaÿ, P. (eds.) (2000) Carbohydrates in Chemistry and Biology, Wiley-VCH, Weinheim.

    Google Scholar 

  9. Satoshi, O. (ed.) (2002) Macrolide Antibiotics: Chemistry, Biology, and Practice, Amsterdam, Academic Press.

    Google Scholar 

  10. Rosen, M.J. (2004) Surfactants and Interfacial Phenomena, 3rd edn., John Wiley & Sons, New York.

    Book  Google Scholar 

  11. Robinson, J.A. (1991) Chemical and Biochemical Aspects of Polyether-Ionophore Antibiotic Biosynthesis, Prog. Chem. Org. Nat. Prod. 58, 1–82.

    CAS  Google Scholar 

  12. Kirst, H.A. (1992) Macrolides, in Encyclopedia of Chemical Technology, 4th edn. (Howe-Grant, M., ed.), Vol. 3, pp. 169–213, John Wiley & Sons, New York.

    Google Scholar 

  13. Crandell, L.W., and Hamill, R.L. (1992) Antibiotics, Polyenes, in Encyclopedia of Chemical Technology, 4th edn. (Howe-Grant, M., ed.), Vol. 3, pp. 307–311, John Wiley & Sons, New York.

    Google Scholar 

  14. Szabo, G. (1981) Structural Aspects of Ionophore Function, Fed. Proc. 40, 2196–2201.

    PubMed  CAS  Google Scholar 

  15. Krasne, S., and Eisenman, G. (1976) Influence of Molecular Variations of Ionophore and Lipid on the Selective Ion Permeability of Membranes: I. Tetranactin and the Methylation of Nonactin-type Carriers, J. Membr. Biol. 30, 1–44.

    Article  PubMed  CAS  Google Scholar 

  16. Szabo, G., Eisenman, G., Laprade, R., Ciani, S.M., and Krasne, S. (1973) Experimentally Observed Effects of Carriers on the Electrical Properties of Bilayer Membranes—Equilibrium Domain. With a Contribution on the Molecular Basis of Ion Selectivity, Membranes 2, 179–328.

    PubMed  CAS  Google Scholar 

  17. Pressman, B.C., Harris, E.J., Jagger, W.S., and Johnson, J.M. (1967) Antibiotic-Mediated Transport of Alkali Ions Across Lipid Barriers, Proc. Natl. Acad. Sci. USA 58, 1949–1956.

    Article  PubMed  CAS  Google Scholar 

  18. Matsuoka, M., and Sasaki, T. (2004) Inactivation of Macrolides by Producers and Pathogens, Curr. Drug Targets Infect. Disord. 4, 217–240.

    Article  PubMed  CAS  Google Scholar 

  19. Goldman, R.C., and Scaglione, F. (2004) The Macrolide-Bacterium Interaction and Its Biological Basis, Curr. Drug Targets Infect. Disord. 4, 241–260.

    Article  PubMed  CAS  Google Scholar 

  20. Wheeler, J.J., Veiro, J.A., and Cullis, P.R. (1994) Ionophore-Mediated Loading of Ca2+ into Large Unilamellar Vesicles in Response to Transmembrane pH Gradients, Mol. Membr. Biol. 11, 151–157.

    Article  PubMed  CAS  Google Scholar 

  21. Somani, P., Kabell, G.G., Saini, R.K., and Hester, R.K. (1980) The Effect of Monensin, a Na+-Selective Carboxylic Ionophore, on Coronary Circulation, Adv Myocardiol. 2, 435–447.

    PubMed  CAS  Google Scholar 

  22. Maravic, G. (2004) Macrolide Resistance Based on the Erm-Mediated rRNA Methylation, Curr. Drug Targets Infect. Disord. 4, 193–202.

    Article  PubMed  CAS  Google Scholar 

  23. Budanov, S.V., and Vasil'ev, A.N. (2004) Clarithromycin: Specific Features of Antimicrobial Spectrum and Clinical Use, Antibiot. Khimioter. (Russian) 49, 19–25.

    CAS  Google Scholar 

  24. Gotfried, M.H. (2004) Appropriate Outpatient Macrolide Use in Community-Acquired Pneumonia, J. Am. Acad. Nurse Pract. 16, 146–150.

    Article  PubMed  Google Scholar 

  25. Gotfried, M.H. (2003) Clarithromycin (Biaxin) Extended-Release Tablet: A Therapeutic Review, Expert Rev. Anti Infect. Ther. 1, 9–20.

    Article  PubMed  CAS  Google Scholar 

  26. Cazzola, M., Matera, M.G., and Blasi, F. (2004) Macrolide and Occult Infection in Asthma, Curr. Opin. Pulm. Med. 10, 7–14.

    Article  PubMed  CAS  Google Scholar 

  27. Neher, J.O., and Morton, J.R. (2004) What Is the Best Macrolide for Atypical Pneumonia? J. Fam. Pract. 53, 229–230.

    PubMed  Google Scholar 

  28. Hammerschla g, M.R. (2003) Pneumonia Due to Chlamydia pneumoniae in Children: Epidemiology, Diagnosis, and Treatment, Pediatr. Pulmonol. 36, 384–390.

    Article  Google Scholar 

  29. Satoshi, O. (ed.) (2002) Macrolide Antibiotics: Chemistry, Biology, and Practice, Academic Press, Amsterdam.

    Google Scholar 

  30. Schönfeld, W., and Kirst, H.A. (eds.) (2002) Macrolide Antibiotics, Birkhauser Verlag.

  31. Burja, A.M., Banaigs, B., Abou-Mansour, E., Burgess, J.G., and Wright, P.C. (2001) Marine Cyanobacteria—A Prolific Source of Natural Products, Tetrahedron 57, 9347–9377.

    Article  CAS  Google Scholar 

  32. Shimizu, Y. (2000) Microalgae as a Drug Source, in Drugs from the Sea (Fusetani, N., ed.), pp. 30–45, Karger, Basel.

    Chapter  Google Scholar 

  33. Kobayashi, J., and Ishibashi, M. (1999) Marine Natural Products and Marine Chemical Ecology, in Comprehenstive Natural Products Chemistry (Mori, K., ed.), Vol. 8, pp. 415–649, Elsevier, Amsterdam.

    Google Scholar 

  34. Shimizu, Y. (1996) Microalgal Metabolites: A New Perspective, Annu. Rev. Microbiol. 50, 431–465.

    Article  PubMed  CAS  Google Scholar 

  35. Woodward, R.B. (1957) Struktur und Biogenese der Macrolide: Eine neue Klasse von Naturstoffen, Angew. Chem. 69, 50–62.

    CAS  Google Scholar 

  36. Moore, B.S., and Hopke, J.N. (2001) Discovery of a New Bacterial Polyketide Biosynthetic Pathway, Chembiochem. 2, 35–38.

    Article  PubMed  CAS  Google Scholar 

  37. McGuffey, R.K., Richardson, L.F., and Wilkinson, J.I.D. (2001) Ionophores for Dairy Cattle: Current Status and Future Outlook, J. Dairy Sci. 84, Suppl., E194-E203.

    CAS  Google Scholar 

  38. O'Hagan, D. (1991) The Polyketide Metabolites, Ellis Horwood, Chichester, United Kingdom.

    Google Scholar 

  39. Dutton, C.J., Banks, B.J., and Cooper, C.B. (1995) Polyether Ionophores, Nat. Prod. Rep. 12, 165–181.

    Article  PubMed  CAS  Google Scholar 

  40. Murata, M., and Yasumoto, T. (2000) The Structure Elucidation and Biological Activities of High Molecular Weight Algal Toxins: Maitotoxin, Prymnesins and Zooxanthellatoxins, Nat. Prod. Rep. 17, 293–314.

    Article  PubMed  CAS  Google Scholar 

  41. Rein, K.S., and Borrone, J. (1999) Polyketides from Dinoflagellates: Origins, Pharmacology and Biosynthesis, Comp. Biochem. Physiol. 124B, 117–131.

    CAS  Google Scholar 

  42. Faul, M.M., and Huff, B.E. (2000) Strategy and Methodology Development for the Total Synthesis of Polyether Ionophore Antibiotics, Chem. Rev. 100, 2407–2473.

    Article  PubMed  CAS  Google Scholar 

  43. Traxler, P., Gruner, J., and Auden, J.A.L. (1977) Papulacandins, A New Family of Antibiotics with Antifungal Activity, I. Fermentation, Isolation, Chemical and Biological Characterization of Papulacandins A, B, C, D and E, J. Antibiot. 30, 289–296.

    PubMed  CAS  Google Scholar 

  44. Traxler, P., Fritz, H., and Richter, W.J. (1977) On the Structure of Papulacandin B, a New Antibiotic with Antifungal Activity, Helv. Chim. Acta 60, 578–584.

    Article  PubMed  CAS  Google Scholar 

  45. Traxler, P., Fritz, H., Fuhrer, H., and Richter, W.J. (1980) Papulacandins, a New Family of Antibiotics with Antifungal Activity. Structures of Papulacandins A, B, C and D, J. Antibiot. 33, 967–978.

    PubMed  CAS  Google Scholar 

  46. Onishi, J., Meinz, M., Thompson, J., Curotto, J., Dreikorn, S., Rosenbach, M., Douglas, C., Abruzzo, G., Flattery, A., Kong, L., et al. (2000) Discovery of Novel Antifungal (1,3)-β-d-Glucan Synthase Inhibitors, Antimicrob. Agents Chemother. 44, 368–377.

    Article  PubMed  CAS  Google Scholar 

  47. Debono, M., and Gordee, R.S. (1994) Antibiotics That Inhibit Fungal Cell Wall Development, Annu. Rev. Microbiol. 48, 471–497.

    Article  PubMed  CAS  Google Scholar 

  48. Rommele, G., Traxler, P., and Wehrli, W. (1983) Papulacandins: The Relationship Between Chemical Structure and Effect on Glucan Synthesis in Yeast, J. Antibiot. 36, 1539–1542.

    PubMed  CAS  Google Scholar 

  49. Kaneto, R., Chiba, H., Agematu, H., Shibamoto, N., Yoshioka, T., Nishada, H., and Okamoto, M. (1993) Mer-WF3010, a New Member of the Papulacandin Family. I. Fermentation, Isolation and Characterization, J. Antibiot. 46, 247–250.

    PubMed  CAS  Google Scholar 

  50. Chiba, H., Kaneto, R., Agematu, H., Shibamoto, N., Yoshioka, T., Nishida, H., and Okamoto, R. (1993) Mer-WF3010, a New Member of the Papulacandin Family. II. Structure Determination, J. Antibiot. 46, 356–358.

    PubMed  CAS  Google Scholar 

  51. Van Middlesworth, F., Omstead, M.N., Schmatz, D., Bartizal, K., Fromtling, R., Bills, G., Nollstadt, K., Honeycutt, S., Zweerink, M., Garrity, G., and Wilson, K. (1991) L-687,781, A New Member of the Papulacandin Family of β-1,3-d-Glucan Synthesis Inhibitors. 2. Fermentation, Isolation, and Biological Activity, J. Antibiot. 44, 45–51.

    Google Scholar 

  52. Chen, R.H., Tennant, S., Frost, D., O'Beirne, M.J., Karwowski, J.P., Humphrey, P.E., Malmberg, L.H., Choi, W., Brandt, K.D., West, P., et al. (1996) Discovery of Sarcandin, a Novel Papulacandin, from a Fusarium Species, J. Antibiot. 49, 596–598.

    PubMed  CAS  Google Scholar 

  53. Kobayashi, J., Kubota, T., Takahashi, M., Ishibashi, M., Tsuda, M., and Naoki, H. (1999) Colopsinol A, a Novel Polyhydroxyl Metabolite from Marine Dinoflagellate Amphidinium sp., J. Org. Chem. 64, 1478–1482.

    Article  PubMed  CAS  Google Scholar 

  54. Kubota, T., Tsuda, M., Takahashi, M., Ishibashi, M., Naoki, H., and Kobayashi, J. (1999) Colopsinols B and C, New Long Chain Polyhydroxy Compounds from Cultured Marine Dinoflagellate Amphidinium sp., J. Chem. Soc., Perkin Trans. 1, 3483–3487.

    Article  Google Scholar 

  55. Kubota, T., Tsuda, M., Takahashi, M., Ishibashi, M., Oka, S., and Kobayashi, J. (2000) Colopsinols D and E, New Polyhydroxyl Linear Carbon Chain Compounds from Marine Dinoflagellate Amphidinium sp., Chem. Pharm. Bull. 48, 1447–1451.

    PubMed  CAS  Google Scholar 

  56. Mayer, A.M.S., and Gustafson, K.R. (2003) Marine Pharmacology in 2000: Antitumor and Cytotoxic Compounds, Int. J. Cancer 105, 291–299.

    Article  PubMed  CAS  Google Scholar 

  57. Westley, J.W. (1977) Polyether Antibiotics: Versatile Carboxylic Acid Ionophores Produced by Streptomyces, Adv. Appl. Microbiol. 22, 177–223.

    Article  PubMed  CAS  Google Scholar 

  58. Westley, J.W. (ed.) (1982) Polyether Antibiotics: Naturally Occurring Acid Ionophores, Biology, Marcel Dekker, New York.

    Google Scholar 

  59. Hopwood, D.A. (1997) Genetic Contributions to Understanding Polyketide Synthases, Chem. Rev. 97, 2465–2497.

    Article  PubMed  CAS  Google Scholar 

  60. Katz, L., and McDaniel, R. (1999) Novel Macrolides Through Genetic Engineering, Med. Res. Rev. 19, 543–558.

    Article  PubMed  CAS  Google Scholar 

  61. Tsou, H.R., Rajan, S., Fiala, R., Mowery, P.C., Bullock, M.W., Borders, D.B., James, J.C., Martin, J.H., and Morton, G.O. (1984) Biosynthesis of the Antibiotic Maduramicin. Origin of the Carbon and Oxygen Atoms as well as the 13C NMR Assignments, J. Antibiot. 37, 1651–1663.

    PubMed  CAS  Google Scholar 

  62. Tsou, H.R., Rajan, S., Chang, T.T., Fiala, R.R., Stockton, G.W., and Bullock, M.W. (1987) The Utilization of Molecular Oxygen During the Biosynthesis of Maduramicin, J. Antibiot. 40, 94–99.

    PubMed  CAS  Google Scholar 

  63. Mizoue, K., Seto, H., Mizutani, T., Yamagishi, M., Kawashima, A., Omura, S., Ozeki, M., and Otake, N. (1980) Studies on the Ionophorous Antibiotics. XXV. The Assignments of the 13C-NMR Spectra of Dianemycin and Lenoremycin, J. Antibiot. 33, 144–156.

    PubMed  CAS  Google Scholar 

  64. Cane, D.E., and Hubbard, B.R. (1987) Polyether Biosynthesis. 3. Origin of the Carbon Skeleton and Oxygen Atoms of Lenoremycin, J. Am. Chem. Soc. 109, 6533–6535.

    Article  CAS  Google Scholar 

  65. Imada, A., Nozaki, Y., Hasegawa, T., Mizuta, E., Igarasi, S., and Yoneda, M. (1978) Carriomycin, a New Polyether Antibiotic Produced by Streptomyces hygroscopicus, J. Antibiot. 31, 7–14.

    PubMed  CAS  Google Scholar 

  66. Mitani, M., and Otake, N. (1978) Studies on the Ionophorous Antibiotics. XV. The Monovalent Cation Selective Ionophorous Activities of Carriomycin, Lonomycin and Etheromycin, J. Antibiot. 31, 750–755.

    PubMed  CAS  Google Scholar 

  67. Tsuji, N., Nagashima, K., Kobayashi, M., Wakisaka, Y., and Kawamura, Y. (1976) Two New Antibiotics, A-218 and K-41. Isolation and Characterization, J. Antibiot. 29, 10–14.

    PubMed  CAS  Google Scholar 

  68. Cheng, X.C., Jensen, P.R., and Fenical, W. (1999) Arenaric Acid, a New Pentacyclic Polyether Produced by a Marine Bacterium (Actinomycetales), J. Nat. Prod. 62, 605–607.

    Article  PubMed  CAS  Google Scholar 

  69. Sassaki, T. (1985) A New Antibiotic SF2324 Produced by Actinomadura, Japanese Patent Application 60130394.

  70. Sezaki, M., Sasaki, T., Nakazawa, T., Takeda, U., Iwata, M., Watanabe, T., Koyama, M., Kai, F., Shomura, T., and Kojima, M. (1985) A New Antibiotic SF-2370 Produced by Actinomadura, J. Antibiot. 38, 1437–1439.

    PubMed  CAS  Google Scholar 

  71. Labeda, D.P., Goodman, J.J., and Martin, J.H.E.J. (1986) Antibiotic LL-C23201-γ, U.S. Patent Application 4628046.

  72. Bull, A.T., Goodfellow, M., and Slater, J.H. (1992) Biodiversity as a Source of Innovation in Biotechnology, Annu. Rev. Microbiol. 46, 219–246.

    Article  PubMed  CAS  Google Scholar 

  73. Dirlam, J.P., Belton, A.M., Bordner, J., Cullen, W.P., Huang, L.H., Kojima, Y., Maeda, H., Nishiyama, S., Oscarson, J.R., Ricketts, A.P., et al. (1992) CP-82,009, a Potent Polyether Anticoccidial Related to Septamycin and Produced by Actinomadura sp., J. Antibiot. 45, 331–340.

    PubMed  CAS  Google Scholar 

  74. Wright, D.E. (1979) The Oorthosomycins, a New Family of Antibiotics, Tetrahedron 35, 1207–1237.

    Article  CAS  Google Scholar 

  75. Girijavallabhan, V.M., and Ganguly, A.K. (1992) Antibiotics, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th edn., Vol. 3, pp. 259–266, John Wiley & Sons, New York.

    Google Scholar 

  76. Ganguly, A.K., and Saksena, A.K. (1975) Structure of Everninomicin B, J. Antibiot. 28, 707–709.

    PubMed  CAS  Google Scholar 

  77. Ganguly, A.K., Sarre, O.Z., Greeves, D., and Morton, J. (1975) Structure of Everninomicin D-1, J. Am. Chem. Soc. 97, 1982–1985.

    Article  PubMed  CAS  Google Scholar 

  78. Ganguly, A.K., Pramanik, B., Chan, T.M., Sarre, O.Z., Liu, Y.-T., Morton, J., and Girijavallabhan, V. (1989) The Structure of New Oligosaccharide Antibiotics, 13–384 Component-1 and Component-5, Heterocycles 28, 83–88.

    CAS  Google Scholar 

  79. Wang, E., Simard, M., Bergeron, Y., Beauchamp, D., and Bergeron, M.G. (2000) In vivo Activity and Pharmacokinetics of Ziracin (SCH27899), a New Long-Acting Everninomicin Antibiotic, in a Murine Model of Penicillin-Susceptible or Penicillin-Resistant Pneumococcal Pneumonia, Antimicrob. Agents Chemother. 44, 1010–1018.

    Article  PubMed  CAS  Google Scholar 

  80. Linden, P.K., and Miller, C.B. (1999) Vancomycin Resistant Enterococci: The Clinical Effect of a Common Nosocomial Pathogen, Diagnost. Microbiol. Infect. Disease 33, 113–120.

    Article  CAS  Google Scholar 

  81. Chu, M., Mierza, R., Patel, M., Jenkins, J., Das, P., Pramanik, B., and Chan, T.-M. (2000) A Novel Everminomicin Antibiotic Active Against Multidrug-Resistant Bacteria, Tetrahedron Lett. 41, 6689–6693.

    Article  CAS  Google Scholar 

  82. Saksena, A.K., Jao, E., Murphy, B., Schumacher, D., Chan, T.M., Puar, M.S., Jenkins, J.K., Maloney, D., Cordero, M., Pramanik, B.N., et al. (1998) Structure Elucidation of Sch 49088, a Novel Everninomicin Antibiotic Containing an Unusual Hydroxylamino-Ether Sugar, Everhydroxylaminose, Tetrahedron Lett. 39, 8441–8444.

    Article  CAS  Google Scholar 

  83. Bartner, P., Pramanik, B.N., Saksena, A.K., Liu, Y.-H., Das, P.R., Sarre, O., and Ganguly, A.K. (1997) Structure Elucidation of Everninomicin-6, a New Oligosaccharide Antibiotic, by Chemical Degradation and FAB-MS Methods, J. Am. Soc. Mass Spectrom. 8, 1134–1140.

    Article  CAS  Google Scholar 

  84. Liu, C.M., Hermann, T.E., Downey, A., La, B., Prosser, T., Schildknecht, E., Palleroni, N.J., Westley, J.W., and Miller, P.A. (1983) Novel Polyether Antibiotics X-14868A, B, C, and D Produced by a Nocardia. Discovery, Fermentation, Biological as well as Ionophore Properties and Taxonomy of the Producing Culture, J. Antibiot. 36, 343–350.

    PubMed  CAS  Google Scholar 

  85. Liu, C.M., Prosser, T., and Westley, J. (1985) Antibiotic X-14934A, U.S. Patent Application 4,510,317.

  86. Cullen, W.P., Bordner, J., Huang, L.H., Moshier, P.M., Oscarson, J.R., Presseau, L.A., Ware, R.S., Whipple, E.B., Kojima, Y., and Maeda, H. (1990) CP-60,993, a New Dianemycin-like Ionophore Produced by Streptomyces hygroscopicus ATCC 39305: Fermentation, Isolation and Characterization, J. Ind. Microbiol. 5, 365–374.

    Article  PubMed  CAS  Google Scholar 

  87. Celmer, W.D., Cullen, W.P., Maeda, H., Ruddock, J.C., and Tone, J. (1987) 19-Epi-dianemycin as an Anticoccidial and Antibacterial Agent, U.S. Patent Application 4707493.

  88. Oscarson, J.R., Bordner, J., Celmer, W.D., Cullen, W.P., Huang, L.H., Maeda, H., Moshier, P.M., Nishiyama, S., Presseau, L., Shibakawa, R., and Tone, J. (1989) Endusamycin, a Novel Polycyclic Ether Antibiotic Produced by a Strain of Streptomyces endus subsp. aureus, J. Antibiot. 42, 37–48.

    PubMed  CAS  Google Scholar 

  89. Dirlam, J.P., Presseau-Linabury, L., and Koss D.A. (1990) The Structure of CP-80,219, a New Polyether Antibiotic Related to Dianemycin, J. Antibiot. 43, 727–730.

    PubMed  CAS  Google Scholar 

  90. Nakayama, H., Seto, H., Otake, N., Yamaguchi, M., Kawashima, A., Mizutani, T., and Omura, S. (1985) Studies on the Ionophorous Antibiotics. 28. Moyukamycin, a New Glycosylated Polyether Antibiotic, J. Antibiot. 38, 1433–1436.

    PubMed  CAS  Google Scholar 

  91. Westley, J.W., Liu, C.M., Sello, L.H., Troupe, N., Blount, J.F., Chiu, A.M., Todaro, L.J., Miller, P.A., and Liu, M. (1984) Isolation and Characterization of Antibiotic X-14931A, the Naturally Occurring 19-Deoxyaglycone of Dianemycin, J. Antibiot. 37, 813–815.

    PubMed  CAS  Google Scholar 

  92. Hauske, J.R., and Kostek, G. (1989) Structure Elucidation of a New Polyether Antibiotic iso-Dianemycin, J. Org. Chem. 54, 3500–3504.

    Article  CAS  Google Scholar 

  93. Kawada, M., Sumi, S., Umezawa, K., Inouye, S., Sawa, T., and Seto, H. (1992) Circumvention of Multidrug Resistance in Human Carcinoma KB Cells by Polyether Antibiotics, J. Antibiot. 45, 556–562.

    PubMed  CAS  Google Scholar 

  94. Dirlam, J.P., Belton, A.M., Bordner, J., Cullen, W.P., Huang, L.H., Kojiima, Y., Maeda, H., Hishida, H., Nishiyama, S., Oscarson, J.R., Rickets, A.P., Sakakibara, T., Tone, J., and Tsukuda, K. (1990) CP-84,657, a Potent Polyether Anticocidial Related to Portmicin and Produced by Actinomadura sp., J. Antibiot. 43, 668–679.

    PubMed  CAS  Google Scholar 

  95. Ricketts, A.P., Dirlam, J.P., and Shively, J.E. (1992) Anticocidial Efficacy and Chicken Toleration of Potent New Polyether Ionophores. 2. The Portmicin Relative CP-84,657, Poultry Sci. 71, 1631–1636.

    CAS  Google Scholar 

  96. Dirlam, J.P., Bordner, J., Chang, S.P., Grizzuti, A., Nelson, H., Tynan, E.J., and Whipple, E.B. (1992) The Isolation and Structure of CP-120,509, a New Polyether Antibiotic Related to Semduramicin and Produced by Mutants of Actinomadura roseorufa, J. Antibiot. 45, 1544–1548.

    PubMed  CAS  Google Scholar 

  97. Kusakabe, Y., Mitsuoka, S., Omuro, Y., Seino, A., Arika, T., and Iwakaya, Y. (1979) Antibiotic of CP-120,509, Japanese Patent Application 7984576.

  98. Cullen, W.P., Celmer, W.D., Chappel, L.R., Huang, L.H., Jefferson, M.T., Ishiguro, M., Maeda, H., Nishiyama, S., Oscarson, J.R., Shibakawa, R., and Tone, J. (1988) CP-61,405, a Novel Polycyclic Pyrrolether Antibiotic Produced by Streptomyces routienii huang sp. nov., J. Industr. Microbiol. 2, 349–357.

    Article  CAS  Google Scholar 

  99. Glazer, E.A., Koss, D.A., Olson, J.A., Ricketts, A.P., Schaaf, T.K., and Wiscount, R.J., Jr. (1992) Synthetic Modification of a Novel Microbial Ionophore—Exploration of Anticoccidial Structure-Activity Relationships, J. Med. Chem. 35, 1839–1844.

    Article  PubMed  CAS  Google Scholar 

  100. Ricketts, A.P., Glazer, E.A., Migaki, T.T., and Olson, J.A. (1992) Anticoccidial Efficacy of Semduramicin in Battery Studies with Laboratory Isolates of Coccidia, Poultry Sci. 71, 98–103.

    CAS  Google Scholar 

  101. Tynan, E.J., Nelson, T.H., Davies, R.A., and Wernau, W.C. (1992) The Production of Semduramicin by Direct Fermentation, J. Antibiot. 45, 813–815.

    PubMed  CAS  Google Scholar 

  102. Dobler, M. (1981) Ionophores and Their Structures, p. 379, John Wiley & Sons, New York.

    Google Scholar 

  103. Mulhaupt, T. (2003). Isolierung and Strukturafklarung von Sekundarmetaboliten aus marinen Microorganismen nach biologischen und chemischen Gesichspunkten, Ph.D. Dissertation, Ludwig-Maximilians Universitat, Munchen, Germany.

    Google Scholar 

  104. Sun, Y. Zhou, X., Liu, J., Bao, K., Zhang, G., Tu, G., Kieser, T., and Deng, Z. (2002) Streptomyces nanchangensis, a Producer of the Insecticidal Polyether Antibiotic Nanchangmycin and the Antiparasitic Macrolide Meilingmycin, Contains Multiple Polyketide Gene Clusters, Microbiology 148, 361–371.

    PubMed  CAS  Google Scholar 

  105. Sun, Y.H., Zhou, X.F., Tu, G.Q., and Deng, Z.X. (2002) Determination of Nanchangmycin and Meilingmycin by High Performance Liquid Chromatography, Se Pu (in Chinese) 20, 43–45.

    CAS  Google Scholar 

  106. Sun, Y., Zhou, X., Dong, H., Tu, G., Wang, M., Wang, B., and Deng, Z. (2003) A Complete Gene Cluster from Streptomyces nanchangensis NS3226 Encoding Biosynthesis of the Polyether Ionophore Nanchangmycin, Chem. Biol. 10, 431–441.

    Article  PubMed  CAS  Google Scholar 

  107. Konishi, M., Yang, X., Li, B., Fairchild, C.R., and Shimizu, Y. (2004) Highly Cytotoxic Metabolites from the Culture Supernatant of the Temperate Dinoflagellate Protoceratium cf. reticulatum, J. Nat. Prod. 67, 1309–1313.

    Article  PubMed  CAS  Google Scholar 

  108. Graneli, E., and Johansson, N. (2003) Increase in the Production of Allelopathic Substances by Prymnesium parvum Cells Grown Under N- or P-Deficient Conditions, Harmful Algae 2, 135–145.

    Article  CAS  Google Scholar 

  109. Yasumoto, T. (2001) The Chemistry and Biological Function of Natural Marine Toxins, Chem. Rec. 1, 228–242.

    Article  PubMed  CAS  Google Scholar 

  110. Igarashi, T., Satake, M., and Yasumoto, T. (1996) Prymnesin-2: A Potent Ichthyotoxic and Hemolytic Glycoside Isolated from the Red Tide Alga Prymnesium parvum, J. Am. Chem. Soc. 118, 479–480.

    Article  CAS  Google Scholar 

  111. Igarashi, T., Satake, M., and Yasumoto, T. (1999) Structures and Partial Stereochemical Assignments for Prymnesin-1 and Pyrmnesin-2: Potent Hemolytic and Ichthyotoxic Glycosides Isolated from the Red Tide Alga Prymnesium parvum, J. Am. Chem. Soc. 121, 8499–8511.

    Article  CAS  Google Scholar 

  112. Igarashi, T., Aritake, S., and Yasumoto, T. (1998) Biological Activities of Prymnesin-2 Isolated from a Red Tide Alga Prymnesium parvum, Nat. Toxins, 6, 35–41.

    Article  PubMed  CAS  Google Scholar 

  113. Hamilton-Miller, J.M.T. (1973) Chemistry and Biology of the Polyene Macrolide Antibiotics, Bacteriol. Rev. 37, 166–196.

    CAS  Google Scholar 

  114. Fenical, W. (1993) Chemical Studies of Marine Bacteria: Develo** a New Resource, Chem. Rev. 93, 1673–1683.

    Article  CAS  Google Scholar 

  115. Keseru, G.M., and di Nogra, M. (1995) The Chemistry of Natural Diarylheptanoids, in Studies in Natural Products Chemistry (Atta-ur-Rahman, ed.) Vol. 17, pp. 357–394, Elsevier Science, New York.

    Google Scholar 

  116. Roughley, P.J., and Whiting, D.A. (1971) Diarylheptanoids: The Problems of the Biosynthesis, Tetrahedron Lett., 3741–3746.

  117. Roughley, P.J., and Whiting, D.A. (1973) Experiments in the Biosynthesis of Curcumin, J. Chem. Soc., Perkin Trans 1, 2379–2388.

    Article  Google Scholar 

  118. Inoue, T., Kenmochi, N., Furukawa, N., and Fujita, M. (1987) Biosynthesis of Acerogenin A, a Diarylheptanoid from Acer nikoense, Phytochemistry 26, 1409–1411.

    Article  CAS  Google Scholar 

  119. Inoue, T. (1993) Constituents of Acer nikoense and Myrica rubra. On Diarylheptanoids, Yakugaku Zasshi (in Japanese) 113, 181–197.

    CAS  Google Scholar 

  120. Morikawa, T., Tao, J., Toguchida, I., Matsuda, H., and Yoshikawa, M. (2003) Structures of New Cyclic Diarylheptanoids and Inhibitors of Nitric Oxide Production from Japanese Folk Medicine Acer nikoense, J. Nat. Prod. 66, 86–91.

    Article  PubMed  CAS  Google Scholar 

  121. Matsuda, H., Morikawa, T., Tao, J., Ueda, K., and Yoshikawa, M. (2002) Bioactive Constituents of Chinese Natural Medicines. VII. Inhibitors of Degranulation in RBL-2H3 Cells and Absolute Stereostructures of Three New Diarylheptanoid Glycosides from the Bark of Myrica rubra, Chem. Pharm. Bull. 50, 208–215.

    Article  PubMed  CAS  Google Scholar 

  122. Tao, J., Morikawa, M., Toguchida, I., Ando, S., Matsuda, H., and Yoshikawa, M. (2002) Inhibitors of Nitric Oxide Production from the Bark of Myrica rubra: Structures of New Biphenyl Type Diarylheptanoid Glycosides and Taraxerane Type Triterpene, Bioorg. Med. Chem. 10, 4005–4012.

    Article  PubMed  CAS  Google Scholar 

  123. Lakshmi Niranjan Reddy, V., Ravinder, K., Srinivasulu, M., Venkateshwar Goud, T., Malla Reddy, S., Srujankumar, D., Prabhakar Rao, T., Suryanarayana Murty, U., and Venkateswarlu, Y. (2003) Two New Macrocyclic Diaryl Ether Heptanoids from Boswellia ovalifoliolata, Chem. Pharm. Bull. 51, 1081–1084.

    Article  PubMed  Google Scholar 

  124. Arcamone, F.M., Bertazolli, C., Ghione, M., and Scotti, T. (1959) Melanosporin and Elaiophylin, New Antibiotics from Streptomyces melanosporus (Sive melanosporofaciens) sp., Gion. Microbiol. 7, 207–216.

    CAS  Google Scholar 

  125. Arai, M. (1960) Azalomycins B and F, Two New Antibiotics II. Properties and Isolation, J. Antibiot. 13, 46–50.

    PubMed  CAS  Google Scholar 

  126. Fiedler, H.P., Worner, W., Zahner, H., Kaiser, H.P., Keller-Schierlein, W., and Muller, A. (1981) Metabolic Products of Microorganisms. 200. Isolation and Characterisation of Niphithricins A and B, and Elaiophylin, Antibiotics Produced by Streptomyces violaceoniger, J. Antibiot. 34, 1107–1118.

    PubMed  CAS  Google Scholar 

  127. Haydock, S.F., Mironenko, T., Ghoorahoo, H.I., and Leadlay, P.F. (2004) The Putative Elaiophylin Biosynthetic Gene Cluster in Streptomyces sp. DSM4137 Is Adjacent to Genes Encoding Adenosylcobalamin-Dependent Methylmalonyl CoA Mutase and to Genes for Synthesis of Cobalamin, J. Biotechnol. 113, 55–68.

    Article  PubMed  CAS  Google Scholar 

  128. Yamada, T., Minoura, K., and Numata, A. (2002) Halichoblelide, a Potent Cytotoxic Macrolide from a Streptomyces Species Separated from a Marine Fish, Tetrahedron Lett. 43, 1721–1724.

    Article  CAS  Google Scholar 

  129. Erickson, K.L., Gustafson, K.R., Pannell, L.K., Beutler, J.A., and Boyd, M.R. (2002) New Dimeric Macrolide Glycosides from the Marine Sponge Myriastra clavosa, J. Nat. Prod. 65, 1303–1306.

    Article  PubMed  CAS  Google Scholar 

  130. Rao, M.R., and Faulkner, D.J. (2002) Clavosolides A and B, Dimeric Macrolides from the Philippines Sponge Myriastra clavosa, J. Nat. Prod. 65, 386–388.

    Article  PubMed  CAS  Google Scholar 

  131. Luo, Y., Feng, C., Tian, Y., and Zhang, G. (2002) Glycosides from Dicliptera riparia, Phytochemistry 61, 449–454.

    Article  PubMed  CAS  Google Scholar 

  132. Hamburger, M., Hostettmann, M., Stoeckli-Evans, H., Solis, P.N., Gupta, M.P., and Hostettmann, K. (1990) A Novel Type of Dimeric Secoiridoid Glycoside from Lisianthius jefensis Robyns et Elias, Chim. Acta 73, 1845–1852.

    Article  CAS  Google Scholar 

  133. Mukhtara, N., Malik, A., Riaza, N., Iqbala, K., Tareen, R.B., Khana, S.N., Nawaza, S.A., Siddiquia, J., and Iqbal Choudharya, M.I. (2004) Pakistolides A and B, Novel Enzyme Inhibitory and Antioxidant Dimeric 4-(Glucosyloxy)benzoates from Berchemia pakistanica, Helv. Chim. Acta 87, 416–424.

    Article  Google Scholar 

  134. Inoshiri, S., Sasaki, M., Kohda, H., Otsuka, H., and Yamasaki, K. (1987) Aromatic Glycosides from Berchemia racemosa, Phytochemistry 26, 2811–2814.

    Article  CAS  Google Scholar 

  135. Okuda, T., Yoshida, T., and Hatano, T. (1993) Classification of Oligomeric Hydrolysable Tannins and Specificity of Their Occurrence in Plants, Phytochemistry 32, 507–521.

    Article  CAS  Google Scholar 

  136. Yoshida, T., Hatano, T., and Ito, H. (2000) Chemistry and Function of Vegetable Polyphenols with High Molecular Weights, Biofactors 13, 121–125.

    PubMed  CAS  Google Scholar 

  137. Chen, L.-G., Yen, K.-Y., Yang, L.-L., Hatano, T., Okuda, T., and Yoshida, T. (1999) Macrocyclic Ellagitannin Dimers, Cuphiins D1 and D2, and Accompanying Tannins from Cuphea hyssopifolia, Phytochemistry 50, 307–312.

    Article  CAS  Google Scholar 

  138. Lee, M.H., Chiou, J.F., Yen, K.Y., Yang, L.L., Yen, K.Y., Hatano, T., Yoshida, T., and Okuda, T. (1997) Two Macrocyclic Hydrolysable Tannin Dimers from Eugenia uniflora, Phytochemistry 44, 1343–1349.

    Article  CAS  Google Scholar 

  139. Yoshida, T., Chou, T., Shing, T., and Okuta, T. (1995) Oenotheins D, F and G, Hydrolysable Tannin Dimers from Oenothera laciniata, Phytochemistry 40, 565–561.

    Article  Google Scholar 

  140. Yoshida, T., Chou, T., Haba, K., Okano, Y., Shingu, T., Miyamoto, K., Koshiura, R., and Okuda, T. (1989) Camelliin B and Nobotanin I, Macrocyclic Ellagitannin Dimers and Related Dimers, and Their Antitumor Activity, Chem. Pharm. Bull. 37, 3174–3176.

    PubMed  CAS  Google Scholar 

  141. Yoshida, T., Chou, T., Matsuda, M., Yasuhara, T., Yazaki, K., Hatano, T., Nitta, A., and Okuda, T. (1991) Woodfordin D and Oenothein A, Trimeric Hydrolyzable Tannins of Macro-Ring Structure with Antitumor Activity, Chem. Pharm. Bull. (Tokyo) 39, 1157–1162.

    CAS  Google Scholar 

  142. Wang, C.C., Chen, L.G., and Yang, L.L. (1999) Antitumor Activity of Four Macrocyclic Ellagitannins from Cuphea hyssopifolia, Cancer Lett. 140, 195–200.

    Article  PubMed  CAS  Google Scholar 

  143. Wang, C.C., Chen, L.G., and Yang, L.L. (2000) Cuphiin D1, the Macrocyclic Hydrolyzable Tannin Induced Apoptosis in HL-60 Cell Line, Cancer Lett. 149, 77–83.

    Article  PubMed  CAS  Google Scholar 

  144. Qian-Cutrone, J., Ueki, T., Huang, S., Mookhtiar, K.A., Ezekiel, R., Kalinowski, S.S., Brown, K.S., Golik, J., Lowe, S., Pirnik, D.M., et al. (1999) Glucolipsin A and B, Two New Glucokinase Activators Produced by Streptomyces purpurogeniscleroticus and Nocardia vaccinii, J. Antibiot.52, 245–255.

    PubMed  CAS  Google Scholar 

  145. Habib, E.S., Yokomizo, K., Suzuki, K., and Uyeda, M. (2001) Biosynthesis of Fattiviracin FV-8, an Antiviral Agent, Biosci. Biotechnol. Biochem. 65, 861–864.

    Article  PubMed  CAS  Google Scholar 

  146. Habib, E.S., Yokomizo, K., Nagao, K., Harada, S., and Uyeda, M. (2001) Antiviral Aactivity of Fattiviracin FV-8 Against Human Immunodeficiency Virus Type 1 (HIV-1), Biosci. Biotechnol. Biochem. 65, 683–685.

    Article  PubMed  CAS  Google Scholar 

  147. Tsunakawa, M., Komiyama, N., Tenmyo, O., Tomita, K., Kawano, K., Kotake, C., Konishi, M., and Oki, T. (1992) New Antiviral Antibiotics, Cycloviracins B1 and B2. I. Production, Isolation, Physico-chemical Properties and Biological Activity, J. Antibiot.45, 1467–1471.

    PubMed  CAS  Google Scholar 

  148. Tsunakawa, M., Kotake, C., Yamasaki, T., Moriyama, T., Konishi, M., and Oki, T. (1992) New Antiviral Antibiotics, Cycloviracins B1 and B2. II. Structure Determination, J. Antibiot. 45, 1472–1480.

    PubMed  CAS  Google Scholar 

  149. Uyeda, M., Yokomizo, K., Miyamoto, Y., and Habib, E.E. (1998) Fattiviracin A1, a Novel Antiherpetic Agent Produced by Streptomyces microflavus Strain No. 2445. I. Taxonomy, Fermentation, Isolation, Physico-chemical Properties and Structure Elucidation, J. Antibiot. 51, 823–828.

    PubMed  CAS  Google Scholar 

  150. Yokomizo, K., Miyamoto, Y., Nagao, K., Kumagae, E., Habib, E.S., Suzuki, K., Harada, S., and Uyeda, M. (1998) Fattiviracin A1, a Novel Antiviral Agent Produced by Streptomyces microflavus Strain No. 2445. II. Biological Properties, J. Antibiot. 51, 1035–1039.

    PubMed  CAS  Google Scholar 

  151. Hyodo, T., Tsuchiya, Y., Sekine, A., and Amano, T. (1999) A Novel Antiviral Agent Produced by Streptomyces, Japanese Kokai Tokkyo Koho, Japanese Patent Application 11246587.

  152. Takahashi, S., Hosoya, M., Koshino, H., and Nakata, T. (2003) Determination of Absolute Structure of Macroviracins by Chemical Synthesis, Org. Lett. 5, 1555–1558.

    Article  PubMed  CAS  Google Scholar 

  153. Kaneko, T., Sakamoto, M., Ohtani, K., Ito, A., Kasai, R., Yamasaki, K., and Padorina, W.G. (1995) Secoiridoid and Flavonoid Glycosides from Gonocaryum calleryanum, Phytochemistry 39, 115–120.

    Article  CAS  Google Scholar 

  154. Mabberley, D.J. (1997) The Plants-Book, a Portable Dictionary of the Vascular Plants, Oxford University Press, Oxford.

    Google Scholar 

  155. Chan, Y.Y., Leu, Y.L., Lin, F.W., Li, C.Y., Wu, Y.C., Shi, L.S., Liou, M.J., and Wu, T.S. (1998) A Secoiridoid and Other Constituents of Gonocaryum calleryanum, Phytochemistry 47, 1073–1077.

    Article  CAS  Google Scholar 

  156. Jansen, R., Kunze, B., Reichenbach, H., and Höfle, G. (2000) Antibiotics from Gliding Bacteria, LXXXVI. Apicularen A and B, Cytotoxic 10-Membered Lactones with a Novel Mechanism of Action from Chondromyces Species (Myxobacteria): Isolation, Structure Elucidation, and Biosynthesis, Eur. J. Org. Chem. 6, 913–919.

    Article  Google Scholar 

  157. Kunze, B., Jansen, R., Sasse, F., Hofle, G., and Reichenbach, H. (1998) Apicularens A and B, New Cytostatic Macrolides from Chondromyces Species (Myxobacteria): Production, Physico-chemical and Biological Properties, J. Antibiot. 51, 1075–1080.

    PubMed  CAS  Google Scholar 

  158. Rezanka, T., and Dembitsky, V.M. (2003) Ten Membered Substituted Cyclic 2-Oxecanone (decalactone) Derivatives from Latrunculia corticata, a Red Sea Sponge, Eur. J. Org. Chem., 2144–2152.

  159. Fogliani, B., Raharivelomanana, P., Bianchini, J.-P., Bouraïma-Madjèbi, S., and Hnawia, E. (2005) Bioactive Ellagitannins from Cunonia macrophylla, an Endemic Cunoniaceae from New Caledonia, Phytochemistry 66, 241–247.

    Article  PubMed  CAS  Google Scholar 

  160. Latté, K.P., and Kolodziej, H. (2000) Pelargoniins, New Ellagitannins from Pelargonium reniforme, Phytochemistry 54, 701–708.

    Article  PubMed  Google Scholar 

  161. Niemetz, R., Schilling, G., and Gross, G.G. (2003) Biosynthesis of the Dimeric Ellagitannin, Cornusiin E, in Tellima grandiflora, Phytochemistry 64, 109–114.

    Article  PubMed  CAS  Google Scholar 

  162. Seeram, N., Lee, R., Hardy, M., and Heber, D. (2005) Rapid Large Scale Purification of Ellagitannins from Pomegranate Husk, a By-product of the Commercial Juice Industry, Separat. Purific. Technol. 41, 49–55.

    Article  CAS  Google Scholar 

  163. Park, E.K., Kim, M.S., Lee, S.H., Kim, K.H., Park, J.-Y., Kim, T.-H., Lee, I.-S., Woo, J.-T., Jung, J.-C., Shin, H.-I., et al. (2004) Furosin, an Ellagitannin, Suppresses RANKL-Induced Osteoclast Differentiation and Function Through Inhibition of MAP Kinase Activation and Actin Ring Formation, Biochem. Biophys. Res. Commun. 325, 1472–1480.

    Article  PubMed  CAS  Google Scholar 

  164. Notka, F., Meier, G., and Wagner, R. (2004) Concerted Inhibitory Activities of Phyllanthus amarus on HIV Replication in vitro and ex vivo, Antiviral Res. 64, 93–102.

    Article  PubMed  CAS  Google Scholar 

  165. Martino, V., Morales, J., Martínez-Irujo, J.J., Font, M., Monge, A., and Coussio, J. (2004) Two Ellagitannins from the Leaves of Terminalia triflora with Inhibitory Activity on HIV-1 Reverse Transcriptase, Phytother. Res. 18, 667–669.

    Article  PubMed  CAS  Google Scholar 

  166. Dutcher, J.D. (1963) Chemistry of the Amino Sugars Derived from Antibiotic Substances, Adv. Carbohydr. Chem. 18, 259–308.

    PubMed  CAS  Google Scholar 

  167. Djerassi, C., and Halpern, O. (1957) The Structure of the Antibiotic Neomethymycin, J. Am. Chem. Soc. 79, 2022–2023.

    Article  CAS  Google Scholar 

  168. Djerassi, C., and Halpern, O. (1958) Macrolide Antibiotics. VII. The Structure of Neomethymycin, Tetrahedron 3, 255–268.

    Article  CAS  Google Scholar 

  169. Hong, J.S.J., Park, S.H., Choi, C.Y., Sohng, J.K., and Yoon, Y.J. (2004) New Olivosyl Derivatives of Methymycin/Pikromycin from an Engineered Strain of Streptomyces venezuelae, FEMS Microbiol. Lett. 238, 391–399.

    PubMed  CAS  Google Scholar 

  170. Mertz, F.P., and Yao, R.C. (1990) Saccharopolyspora spinosa sp. nov. Isolated from Soil Collected in a Sugar Mill Rum Still, Int. J. Syst. Bacteriol. 40, 34–39.

    Google Scholar 

  171. Kirst, H.A., Michel, K.H., Martin, J.W., Creemer, L.C., Chio, E.H., Yao, R.C., Nakatsukasa, W.M., Boeck, L., Occolowitz, J.L., Paschal, J.W. et al. (1991) A83543A-D, Unique Fermentation Derived Tetracyclic Macrolides, Tetrahedron Lett. 32, 4839–4842.

    Article  CAS  Google Scholar 

  172. De Amicis, C.V., Dripps, J.E., Hatten, C.J., and Karr, L. (1997) Physical and Biological Properties of the Spynosins: Novel Macrolide Pest-Control Agents from Fermentation, in Phytochemicals for Pest Control (Hedin, P.A., Hollingworth, R.M., Masler, E.P., Miyamoto, J., and Thompson, D.G., eds.), ACS Symposium Series 658, pp. 144–154, American Chemical Society, Washington, DC.

    Google Scholar 

  173. Kirst, H.A., Michel, K.H., Mynderse, J.S., Chio, E.H., Yao, R.C., Nakatsukasa, W.M., Boeck L., Occolowitz, J.L., Paschal, J.W., Deeter, J.B., and Thompson, G.D. (1992) Discovery, Isolation, and Structure Elucidation of a Family of Structurally Unique Fermentation Derived Tetracyclic Macrolides, in Synthesis and Chemistry of Agrochemicals III (Baker, D.R., Fenyes, J.G., and Stevens, J.J., eds.), pp. 214–225, American Chemical Society, Washington, DC.

    Google Scholar 

  174. Sparks, T.C., Crouse, G.D., and Durst, G. (2001) Natural Products as Insecticides: The Biology, Biochemistry, and Quantitative Structure-Activity Relationships of Spinosyns and Spinosoids, Pest Management Sci. 57, 896–905.

    Article  CAS  Google Scholar 

  175. Sparks, T.C., Thompson, G.D., Kirst, H.A., Hertline, M.B., Larson, L.L., Worden, T.V., and Thibault, S.T. (1998) Biological Activity of the Spinosyns, New Fermentation Derived Insect Control Agents, on Tobacco Budworm (Lepidoptera, Noctuidae) Larvae, J. Econ. Entomol. 91, 1277–1283.

    CAS  Google Scholar 

  176. Thompson, G.D., Dutton, R., and Sparks, T.C. (2000) Spinosad—A Case Study: An Example from a Natural Products Discovery Programme, Pest Management Sci. 56, 696–702.

    Article  CAS  Google Scholar 

  177. Waldron, C., Matsushima, P., Rosteck, P.R., Jr., Broughton, M.C., Turner, J., Madduri, K., Crawford, K.P., Merlo, D.J., and Baltz, R.H. (2001) Cloning and Analysis of the Spinosad Biosynthetic Gene Cluster of Saccharopolyspora spinosa, Chem. Biol. 8, 487–499.

    Article  PubMed  CAS  Google Scholar 

  178. Gaisser, S., Martin, C.J., Wilkinson, B., Sheridan, R.M., Lill, R.E., Weston, A.J., Ready, S.J., Waldron, C., Crouse, G.D., Leadlay, P.F., and Staunton, J. (2002) Engineered Biosynthesis of Novel Spinosyns Bearing Altered Deoxyhexose Substituents, Chem. Commun., 618–619.

  179. Boeck, L., Chio, H., Eaton, T., Godfrey, O., Michel, K., Nakatsukasa, W., and Yao, R. (Eli Lilly). (1990) Lepicidin A from the Soil Microbe Saccharopolyspora spinosa, European Patent Application EP375 316; Chem. Abstr. 114, 80066 (1991).

    Google Scholar 

  180. Sone, H., Kigoshi, H., and Yamada, K. (1996) Aurisides A and B, Cytotoxic Macrolide Glycosides from the Japanese Sea Hare Dolabella auricularia, J. Org. Chem. 61, 8956–8960.

    Article  PubMed  CAS  Google Scholar 

  181. Tan, L.T., Marquez, B.L., and Gerwick, W.H. (2002) Lyngbouilloside, a Novel Glycosidic Macrolide from the Marine Cyanobacterium Lyngbya bouillonii, J. Nat. Prod. 65, 925–928.

    Article  PubMed  CAS  Google Scholar 

  182. Luesch, H., Yoshida, W.Y., Harrigan, G.G., Doom, J.P., Moore, R.E., and Paul, V.J. (2002) Lyngbyaloside B, a New Glycoside Macrolide from a Palauana Marine Cyanobacterium, Lyngbya sp., J. Nat. Prod. 65, 1945–1948.

    Article  PubMed  CAS  Google Scholar 

  183. Zampella, A., D'Auria, M.V., and Minale, L. (1997) Callipeltosides B and C, Two Novel Cytotoxic Glycoside Macrolides from a Marine Lithistida Sponge Callipelta sp., Tetrahedron 53, 3243–3248.

    Article  CAS  Google Scholar 

  184. Zampella, A., D'Auria, M.V., Minale, L., Debitus, C., and Roussakis, C. (1996) Callipeltoside A: A Cytotoxic Aminodeoxy Sugar-Containing Macrolide of a New Type from the Marine Lithistida Sponge Callipelta sp., J. Am. Chem. Soc. 118, 11085–11088.

    Article  CAS  Google Scholar 

  185. Yotsu-Yamada, M., Haddock, R.L., and Yasumoto, T. (1993) Polycavernoside A—A Novel Glycosidic Macrolide from the Red Alga Polycavernosa tsudai (Gracilaria edulis), J. Am. Chem. Soc. 115, 1147–1148.

    Article  Google Scholar 

  186. Yotsu-Yamada, M., Seki, T., Paul, V., Hideo, H., and Yasumoto, T. (1995) 4 New Analogs of Polycavernoside A, Tetrahedron Lett. 36, 5563–5566.

    Google Scholar 

  187. Momose, I., Iinuma, H., Kinoshita, N., Momose, Y., Kunimoto, S., Hamada, M., and Takeuchi, T. (1999) Decatromicins A and B, New Antibiotics Produced by Actinomadura sp. MK73-NF4. I. Taxonomy, Isolation, Physico-chemical Properties and Biological Activities, J. Antibiot. 52, 781–786.

    PubMed  CAS  Google Scholar 

  188. Momose, I., Hirosawa, S., Nakamura, H., Naganawa, H., Iinuma, H., Ikeda, D., and Takeuchi, T. (1999) Decatromicins A and B, New Antibiotics Produced by Actinomadura sp. MK73-NF4. II. Structure Determination, J. Antibiot. 52, 787–796.

    PubMed  CAS  Google Scholar 

  189. Schroeder, D.R., Colson, K.L., Klohr, S.E., Lee, M.S., Matson, J.A., Brinen, L.S., and Clardy, J. (1996) Pyrrolosporin A, a New Antitumor Antibiotic from Micromonospora sp. C39217-R109-7. 2. Isolation, Physico-chemical Properties, Spectroscopic Study and X-Ray Analysis, J. Antibiot. 49, 865–872.

    PubMed  CAS  Google Scholar 

  190. Lam, K.S., Hesler, G.A., Gustavson, D.R., Berry, R.L., Tomita, K., MacBeth, J.L., Ross, J., Miller, D., and Forenza, S. (1996) Pyrrolosporin A, a New Antitumor Antibiotic from Micromonospora sp. C39217-R109-7. 1. Taxonomy of Producing Organism, Fermentation and Biological Activity, J. Antibiot. 49, 860–864.

    PubMed  CAS  Google Scholar 

  191. McGuire, J.M., Bunch, R.L., Anderson, R.C., Doaz, H.E., Flyun, E.H., Powell, H.M., and Smith, J.W., (1952) Ilotycin, a New Antibiotic, Schweiz. Med. Wochenschr. 82, 1064–1065.

    PubMed  CAS  Google Scholar 

  192. Wiley, P.F., Gale, R., Pettinga, C.W., and Gerzon, K. (1957) Erythromycin. XII. The Isolation, Properties and Partial Structure of Erythromycin C, J. Am. Chem. Soc. 79, 6074–6077.

    Article  CAS  Google Scholar 

  193. Maier, J., Martin, J.R., Egan, R.S., and Corcoran, J.W. (1977) Antibiotic Glycosides. 8. Erythromycin D, a New Macrolide Antibiotic, J. Am. Chem. Soc. 99, 1620–1622.

    Article  Google Scholar 

  194. Martin, J.R., Devault, R.L., Sinclair, A.C., Stanaszek, R.S., and Johnson, P. (1982) A New Naturally Occurring Erythromycin: Erythromycin F, J. Antibiot. 35, 426–430.

    PubMed  CAS  Google Scholar 

  195. Cachet, T., Roets, E., Hoogmartens, J., and Van Der Haeghe, H. (1975) Extension of the Erythromycin Biosynthetic Pathway: Isolation and Structure of Erythromycin E, Tetrahedron 31, 1985–1989.

    Article  Google Scholar 

  196. Celmer, W.D., and Sobin, B.A. (1956) The Isolation of Two Synergistic Antibiotics from a Single Fermentation Source, Antibiot. Annu. 1955–1956, 437–441.

    Google Scholar 

  197. Celmer, W.D., Els, H., and Murai, K. (1958) Oleandomycin Derivatives, Preparation and Characterization, Antibiot. Ann. 1957–1958, 476–483.

    Google Scholar 

  198. Celmer, W.D. (1971) Stereochemical Problems in Macrolide Antibiotics, Pure Appl. Chem. 28, 413–453.

    PubMed  CAS  Google Scholar 

  199. Brockmann, H. (1963) Anthracyclinones and Anthracyclines (rhodomycinone, pyrromycinone and their glycosides), Fortschr. Chem. Org. Naturst. (in German) 21, 121–182.

    CAS  Google Scholar 

  200. Brockmann, H., and Pfennig, N. (1953) The Production of Actinomycin by Counter Current Partition, Hoppe Seylers Z. Physiol. Chem. 292, 77–88.

    PubMed  CAS  Google Scholar 

  201. Corbaz, R., Ettlinger, L., Kellerschierlein, W., and Zahner, H. (1957) Systematology of Actinomycetes. I. Streptomycetes with Rhodomycin-like Pigments, Arch. Mikrobiol. (in German) 25, 325–332.

    Article  CAS  Google Scholar 

  202. Majer, J., McAlpine, J.B., Egan, R.S., and Corcoran, J.W. (1976) Antibiotic Glycosides. VII 10,11-Dihydropicromycin: Another Metabolite of Streptomyces venezuelae, J. Antibiot. 29, 769–770.

    PubMed  CAS  Google Scholar 

  203. Stephens, V.C., Conine, J.W., and Murphy, H.W. (1959) Esters of Erythromycin. IV. Alkyl Sulfate Salts, J. Am. Pharm. Assoc. 48, 620–622.

    CAS  Google Scholar 

  204. Stephens, V.C., and Conine, J.W. (1959) Esters of Erythromycin. III. Esters of Low Molecular Weight Aliphatic Acids, Antibiot Annu. 1958–1959, 346–353.

    Google Scholar 

  205. Clark, R.K., Jr., Fricke, H.H., and Lanius, B. (1957) The Purification of Synnematin B by Ion Exchange Resins, Antibiot. Annu. 1956–1957, 749–754.

    Google Scholar 

  206. Philippon, A., Cluzel, R., and Soussy, C.J. (1995) Azithromycin: Critical Points, Pathol Biol (Paris) (in French) 43, 488–497.

    CAS  Google Scholar 

  207. Marquez, J., Murawski, A., Wagman, G.H., Jaret, R.S., and Reimann, H. (1969) Isolation, Purification and Preliminary Characterization of Megalomicin, J. Antibiot. 22, 259–264.

    PubMed  CAS  Google Scholar 

  208. Takasawa, S., Kawamoto, I., Okachi, R., Machida, Y., and Nara, T. (1974) A New Antibiotic, XK-46, J. Antibiot. 27, 502–506.

    PubMed  CAS  Google Scholar 

  209. Wagman, G.H., and Weistein, M.J. (1980) Antibiotic from Micromonospora, Annu. Rev. Microbiol. 34, 537–557.

    Article  PubMed  CAS  Google Scholar 

  210. Egan, R.S., and Martin, J.R. (1970) Structure of Lankamycin, J. Am. Chem. Soc. 92, 4129–4130.

    Article  PubMed  CAS  Google Scholar 

  211. Muntwyler, R., and Keller-Schierlein, W. (1972) Metabolic Products of Microorganisms. Stereochemistry of Lankamycin, Helv. Chim. Acta (in German) 55, 460–467.

    Article  CAS  Google Scholar 

  212. Roncari, G., and Keller-Schierlein, W. (1966) Metabolic Products of Microorganisms, Helv. Chim. Acta (in German) 49, 705–711.

    Article  CAS  Google Scholar 

  213. Namiki, S., Omura, S., Nakayoshi, H., and Sawada, J. (1969) Studies on the Antibiotics from Streptomyces spinichromogenes var. kujimyceticus. I. Taxonomic and Fermentation Studies with Streptomyces spinichromogenes var. kujimyceticus, J. Antibiot. 22, 494–499.

    PubMed  CAS  Google Scholar 

  214. Omura, S., Muro, T., Namiki, S., Shibata, M., Sawada, J. and (1969) Studies on the Antibiotics from Streptomyces spinichromogenes var. kujimyceticus. 3. The Structure of Kujimycin A and Kujimycin B, J. Antibiot. 22, 629–634.

    PubMed  CAS  Google Scholar 

  215. Martin, J.R., Egan, R.S., Goldstein, A.W., Mueller, S.L., Kellerschierlein, W., Mitscher, L.A., and Foltz, R.L. (1976) 3′-De-O-methyl-2′,3′-anhydro-lankamycin, A New Macrolide Antibiotic from Streptomyces violaceoniger, Helv. Chim. Acta. 59, 1886–1894.

    Article  PubMed  CAS  Google Scholar 

  216. Martin, J.R., Egan, R.S., Goldstein, A.W., Stanaszek, R.S., Tadanier, J., and Kellerschierlein, W. (1977) Minor Lankamycin-Related Antibiotics from Streptomyces violaceoniger, Helv. Chim. Acta 60, 2559–2565.

    Article  PubMed  CAS  Google Scholar 

  217. Arnoux, B., Pascard, C., Raynaud, L., and Lunel, J. (1980) 23672 RP, a New Macrolide Antibiotic from Streptomyces chryseus. Mass Spectrometry Study and X-Ray Structure Determination, J. Am. Chem. Soc. 102, 3605–3608.

    Article  CAS  Google Scholar 

  218. Klein, D., Braekman, J.C., Daloze, D., Hoffmann, L., and Demoulin, V. (1997) Lyngbyaloside, a Novel 2,3,4-Tri-O-methyl-6-deoxy-α-mannopyranoside Macrolide from Lyngbya bouillonii (Cyanobacteria), J. Nat. Prod. 60, 1057–1059.

    Article  CAS  Google Scholar 

  219. Hegde, V.R., Patel, M.G., Gullo, V.P., Ganguly, A.K., Sarre, O., Puar, M.S., and McPhail, A.T. (1990) Macrolactams: A New Class of Antifungal Agents, J. Am. Chem. Soc. 112, 6403–6405.

    Article  CAS  Google Scholar 

  220. Hegde, V.R., Patel, M.G., Gullo, V.P., and Puar, M.S. (1991) SCH-38518 and SCH-39185—2 Novel Macrolactam Antifungals, J. Chem. Soc. Chem. Commun., 810–812.

  221. Naruse, N., Tenmyo, O., Kawano, K., Tomita, K., Ohgusa, N., Miyaki, T., Konishi, M., and Oki, T. (1991) Fluvirucin-A1, Fluvirucin-A2, Fluvirucin-B1, Fluvirucin-B2, Fluvirucin-B3, Fluvirucin-B4, and Fluvirucin-B5, New Antibiotics Active Against Influenza A Virus. 1. Production, Isolation, Chemical Properties and Biological Activities, J. Antibiot. 44, 733–740.

    PubMed  CAS  Google Scholar 

  222. Naruse, N., Tsuno, T., Sawada, Y., Konishi, M., and Oki, T. (1991) Fluvirucin-A1, Fluvirucin-A2, Fluvirucin-B1, Fluvirucin-B2, Fluvirucin-B3, Fluvirucin-B4, and Fluvirucin-B5, New Antibiotics Active Against Influenza A Virus. 2. Structure Determination, J. Antibiot. 44, 741–755.

    PubMed  CAS  Google Scholar 

  223. Naruse, N., Konishi, M., Oki, T., Inouye, Y., and Kakisawa, H. (1991) Fluvirucin-A1, Fluvirucin-A2, Fluvirucin-B1, Fluvirucin-B2, Fluvirucin-B3, Fluvirucin-B4, and Fluvirucin-B5, New Antibiotics Active Against Influenza A Virus. 3. The Stereochemistry and Absolute Configuration of Fluvirucin-A1, J. Antibiot. 44, 756–761.

    PubMed  CAS  Google Scholar 

  224. Tomita, K., Oda, N., Hoshino, Y., Ohkusa, N., and Chikazawa, H. (1991) Fluvirucin-A1, Fluvirucin-A2, Fluvirucin-B1, Fluvirucin-B2, Fluvirucin-B3, Fluvirucin-B4 and Fluvirucin-B5, New Antibiotics Active Against Influenza-A Virus. 4. Taxonomy on the Producing Organisms, J. Antibiot. 44, 940–948.

    PubMed  CAS  Google Scholar 

  225. Ui, H., Imoto, M., and Umezawa, K. (1995) Inhibition of Phosphatidylinositol Specific Phospholipase C Activity by Fluvirucin B2 J. Antibiot. 48, 387–390.

    PubMed  CAS  Google Scholar 

  226. Lacey, E., Gill, J.H., Power, M.L., Rickards, R.W., O'Shea, M.G., and Rothshild, J.M. (1995) Bafilolides, Potent Inhibitors of the Motility and Development of the Free-Living Stages of Parasitic Nematodes, Int. J. Parasitol. 25, 349–357.

    Article  PubMed  CAS  Google Scholar 

  227. Umehara, K., Nemoto, K., Ohkubo, T., Miyase, T., Degawa, M., and Noguchi, H. (2004) Isolation of a New 15-Membered Macrocyclic Glycolipid Lactone, Cuscutic Resinoside A from the Seeds of Cuscuta chinensis: A Stimulator of Breast Cancer Cell Proliferation, Planta Med. 70, 299–304.

    Article  PubMed  CAS  Google Scholar 

  228. Yates, D.M., Portillo, V., and Wolstenholme, A.J. (2003) The Avermectin Receptors of Haemonchus contortus and Caenorhabditis elegans, Int. J. Parasitol. 33, 1183–1193.

    Article  PubMed  CAS  Google Scholar 

  229. Wilson, M.L. (1993) Avermectins in Arthropod Vector Management—Prospects and Pitfalls, Parasitol. Today 9, 83–87.

    Article  PubMed  CAS  Google Scholar 

  230. Yen, T.H., and Lin, J.L. (2004) Acute Poisoning with Emamectin Benzoate, J. Toxicol. Clin. Toxicol. 42, 657–661.

    Article  PubMed  CAS  Google Scholar 

  231. Drinyaev, V.A., Mosin, V.A., Kruglyak, E.B., Novik, T.S., Sterlina, T.S., Ermakova, N.V., Kublik, L.N., Levitman, M.K., Shaposhnikova, V.V., and Korystov, Y.N. (2004) Antitumor Effect of Avermectins, Eur. J. Pharmacol. 501, 19–23.

    Article  PubMed  CAS  Google Scholar 

  232. Elegami, A.A., Bates, C., Gray, A.I., Mackay, S.P., Skellern, G.G., and Waigh, R.D. (2003) Two Very Unusual Macrocyclic Flavonoids from the Water Lily Nymphaea lotus, Phytochemistry 63, 727–731.

    Article  PubMed  CAS  Google Scholar 

  233. ElGhazali, G.E.B., ElTohami, M.S., and Elegami, A.A. (1994) Medicinal Plants of the White Nile Provinces, pp. 76–90, Khartoum University Press, Khartoum, Sudan.

    Google Scholar 

  234. Elegami, A.A., Almagboul, A.Z., Omer, M.E.A., and ElTohami, M.S. (2001) Sudanese Plants Used in Folkloric Medicine: Screening for Antibacterial Activity. Part X, Fitoterapia 72, 810–817.

    Article  PubMed  CAS  Google Scholar 

  235. Cosar, C. (1956) Study of Acute Toxicity of Spiramycin in Mice and Its Activity in Experimental Infections of the Same, Therapie (in French) 11, 324–328.

    CAS  Google Scholar 

  236. Chain, E.B. (1958), Chemistry and Biochemistry of Antibiotics, Annu. Rev. Biochem. 27, 167–222.

    Article  PubMed  CAS  Google Scholar 

  237. Sugimoto, C., Mitani, K., Nakazawa, M., Sekizaki, T., Terakado, N., and Isayama, Y. (1983) In vitro Susceptibility of Haemophilus somnus to 33 Antimicrobial Agents, Antimicrob. Agents Chemother. 23, 163–165.

    PubMed  CAS  Google Scholar 

  238. Lounes, A., Lebrihi, A., Benslimane, C., Lefrebrve, G., and Germain, P. (1995) Effect of Nitrogen/Carbon Ratio on the Specific Production Rate of Spiramicin by Streptomyces ambofaciens, Process Biochem. 31, 13–20.

    Article  Google Scholar 

  239. Oka, H., Harada, K., Suzuki, M., and Ito, Y. (2000) Separation of Spiramycin Components Using High-Speed Counter-Current Chromatography, J. Chromatogr. 903, 93–98.

    Article  CAS  Google Scholar 

  240. Stark, W.M., Daily, W.A., and McGuire, J.M. (1961) A Fermentation Study of the Biosynthesis of Tylosin in Synthetic Media, Rend. Ist. Super. Sanita 1, 340–354.

    CAS  Google Scholar 

  241. Hamil, R.L., Haney, M.E., Stamper, M., and Wiley, P.F. (1961) Tylosin, a New Antibiotic. II. Isolation, Properties, and Preparation of Desmycosin, a Microbiologically Active Degradation Product, Antibiot. Chemother. 11, 328–334.

    Google Scholar 

  242. Baltz, R.H., Seno, E.T., Stonessifer, J., and Wild, G.M. (1983) Biosynthesis of the Macrolide Antibiotic Tylosin. A Preferred Pathway from Tylactone to Tylosin, J. Antibiot. 36, 131–141.

    PubMed  CAS  Google Scholar 

  243. Grafe, U., Bocker, H., Reinhardt, G., Tkocz, H., and Thrum, H. (1973) Biosynthesis of the Macrolide Antibiotic A 6599 by Streptomyces hydroscopicus JA 6599 and Activity of the NADP-Dependent Metabolism, Z. Allg. Mikrobiol. (in German) 13, 115–129.

    Article  CAS  Google Scholar 

  244. Hata, T., Yamamoto, H., Matsumae, A., and Ito, S. (1953) Leucomycin, a New Antibiotic, J. Antibiot. 6, 87–89.

    PubMed  CAS  Google Scholar 

  245. Osono, T., Oka, Y., Watanabe, S., Okami, Y., and Ishida, H. (1967), A New Antibiotic, Josamycin I. Isolation and Physico-chemical Characteristics, J. Antibiot. 20, 174–180.

    PubMed  CAS  Google Scholar 

  246. Muroi, M., Izawa, M., and Kishi, T. (1972) Structures of Maridomycin 1,3,4,5 and 6 Macrolide Antibiotics, Experientia 28, 129–131.

    Article  PubMed  CAS  Google Scholar 

  247. Muroi, M., Izawa, M., Ono, H., Higashide, E., and Kishi, T. (1972) Isolation of Maridomycins and Structure of Maridomycin II, Experientia 28, 501–502.

    Article  PubMed  CAS  Google Scholar 

  248. Muroi, M., Izawa, M., Ono, H., Higashide, E., and Kishi, T. (1972) Isolation of Maridomycins and Structure of Maridomycin II, Experientia 28, 878–880.

    Article  PubMed  CAS  Google Scholar 

  249. Ono, H., Hasegawa, T., Higashide, E., and Shibata, M. (1973) Maridomycin, a New Macrolide Antibiotic. I. Taxonomy and Fermentation, J. Antibiot. 26, 191–198.

    PubMed  CAS  Google Scholar 

  250. Muroi, M., Izawa, M., Asai, M., Kishi, T., and Mizuno, K. (1973) Maridomycin, a New Macrolide Antibiotic. II. Isolation and Characterization, J. Antibiot. 26, 199–205.

    PubMed  CAS  Google Scholar 

  251. Muroi, M., Izawa, M., and Kishi, T. (1976) Maridomycin, a New Macrolide Antibiotic. X. The Structure of Maridomycin II, Chem. Pharm. Bull. 24, 450–462.

    PubMed  CAS  Google Scholar 

  252. Muroi, M., Izawa, M., and Kishi, T. (1976) Maridomycin, a New Macrolide Antibiotic. XI. The Structures of Maridomycin Components, Chem. Pharm. Bull. 24, 463–478.

    PubMed  CAS  Google Scholar 

  253. Suzuki, M., Takamori, I., Kinumaki, A., Sugawara, Y., and Okuda, T. (1971) The Structures of Antibiotics YL-704 A and B, Tetrahedron Lett. 12, 435–438.

    Article  Google Scholar 

  254. Suzuki, M., Takamori, I., Kinumaki, A., Suguwara, Y., and Okuda, T. (1971) The Structure of Antibiotics YL-704 C1, C2 and W1, J. Antibiot. 24, 904–906.

    PubMed  CAS  Google Scholar 

  255. Umino, K., Takeda, N., Ito, Y., and Okuda, T. (1974) Studies on Pentenomycins. II. The Structures of Pentenomycin I and II, New Antibiotics, Chem Pharm. Bull. 22, 1233–1238.

    PubMed  CAS  Google Scholar 

  256. Kinumaki, A., Takamori, I., Sugawara, Y., Nagahama, N., Suzuki, M., Egawa, Y., Sakuraza, M., and Okuda, T. (1974) Studies on the Macrolide Antibiotic YL-704 Complex. 2. The Structures of New Macrolide Antibiotics YL-704 A1 and B1, J. Antibiot. 27, 102–107.

    CAS  Google Scholar 

  257. Kinumaki, A., Takamori, I., Sugawara, Y., Suzuki, M., and Okuda, T. (1974) Studies on the Macrolide Antibiotic YL-704 Complex. 3. The Structures of New Macrolide Antibiotics YL-704 A1 and B1, J. Antibiot. 27, 107–116.

    PubMed  CAS  Google Scholar 

  258. Kinumaki, A., Takamori, I., Sugawara, Y., Suzuki, M., and Okuda, T. (1974) Studies on the Macrolide Antibiotic YL-704 Complex. 4. The Structures of New Macrolide Antibiotics YL-704 A1 and B1, J. Antibiot. 27, 117–126.

    PubMed  CAS  Google Scholar 

  259. Niida, T., Tsuruoka, T., Ezaki, N., Sugawara, Y., Akita, E., and Inoye, S. (1971) A New Antibiotics, SF-837, J. Antibiot. 24, 319–320.

    PubMed  CAS  Google Scholar 

  260. Inouye, S., Tsuruoka, T., Shomura, T., Ezaki, N., and Niida, T. (1971) Studies on Antibiotic SF-837, a New Antibiotic. II. Chemical Structure of Antibiotic SF-837, J. Antibiot. 24, 460–475.

    PubMed  CAS  Google Scholar 

  261. Omoto, S., Inouye, S., and Niita, T. (1971) Separation of Aminoglycosidic Antibiotics by Gas-Liquid Chromatography, J. Antibiot. 24, 430–434.

    PubMed  CAS  Google Scholar 

  262. Inouye, S., Shomura, T., Tsuruoka, T., Omoto, S., and Niida, T. (1972) Isolation and Structure of Two Metabolites of a Macrolide Antibiotic, SF-837 Substances, Chem. Pharm. Bull. 20, 2366–2371.

    PubMed  CAS  Google Scholar 

  263. Tsuruoka, T., Inouye, S., Shomura, T., Ezaki, N., and Niida, T. (1971) Studies on Antibiotic SF-837, a New Antibiotic. IV. Structures of Antibiotics SF-837 A2, A3 and A4, J. Antibiot. 24, 526–536.

    PubMed  CAS  Google Scholar 

  264. Huber, G., Wallhaeusser, K.H., Fries, L., Steigler, A., and Weidenmueller, H.L. (1962) Niddamycin, a New Macrolide Antibiotic, Arzneimittelforschung (in German) 12, 1191–1195.

    CAS  Google Scholar 

  265. Masamune, S., Bates, G.S., and Corcoran, J.W. (1977) Macrolides. Recent Progress in Chemistry and Biochemistry, Angew. Chem. Int. Ed. Eng. 16, 585–607.

    Article  CAS  Google Scholar 

  266. Sawada, Y., Tsuno, T., Miyaki, T., Naito, T., and Oki, T. (1989) New Cirramycin Family Antibiotics F-1 and F-2. Selection of Producer Mutants, Fermentation, Isolation, Structural Elucidation and Antibacterial Activity, J. Antibiot. 42, 242–253.

    PubMed  CAS  Google Scholar 

  267. Tanba, H., Kawasaki, T., Mitadera, Y., Soga, H., Shinkai, H. Otsuki, N., Sakakibara, M., and Tatsuta, K. (1988) M119-A, A Novel Macrolide Antibiotic, Jpn. J. Antibiot. (in Japanese) 41, 604–605.

    CAS  Google Scholar 

  268. Brufani, M., and Keller-Schierlein, W. (1966) Metabolic Products of Microorganisms, 54. On the Sugar Building Stones of Angolamycin: l-Mycarose, d-Mycinose and d-Angolosamine, Helv. Chim. Acta. (in German) 49, 1962–1970.

    Article  CAS  Google Scholar 

  269. Shimi, I.R., Shoukry, S., and Ali, F.T. (1979) Staphcocomycin, a New Basic Macrolide Antibiotic, J. Antibiot. 32, 1248–1255.

    PubMed  CAS  Google Scholar 

  270. Koshiyama, H., Okanishi, M., Ohmori, T., Miyaki, T., Tsukiura, H., Matsuzaki, M., and Kawaguchi, H. (1963) Cirramycin, a New Antibiotic, J. Antibiot. 16, 59–66.

    PubMed  CAS  Google Scholar 

  271. Koshiyama, H., Tsukiura, H., Fujisawa, K., Konishi, M., and Hatori, M. (1969), Studies on Cirramycin A1. I. Isolation and Characterization of Cirramycin A1, J. Antibiot. 22, 61–64.

    PubMed  CAS  Google Scholar 

  272. Tsukiura, H., Konishi, M., Saka, M., Naito, T., and Kawaguchi, H. (1969), Studies on Cirramycin A1. 3. Structure of Cirramycin A1, J. Antibiot. 22, 89–99.

    PubMed  CAS  Google Scholar 

  273. Wagman, G.H., Waitz, J.A., Marquez, J., Murawaski, A., Oden, E.M., Testa, R.T., and Weinstein, M.J. (1972) A New Micromonospora Produced Macrolide Antibiotic, Rosamicin, J. Antibiot. 25, 641–646.

    PubMed  CAS  Google Scholar 

  274. Puar, M.S., and Schumacher, D. (1990) Novel Macrolides from Micromonospora rosaria, J. Antibiot. 43, 1497–1501.

    PubMed  CAS  Google Scholar 

  275. Furumai, T., Maezawa, I., Matsuzawa, N., Yano, S., Yamaguchi, T., Takeda, K., and Okuda, T. (1977) Macrolide Antibiotics M-4365 Produced by Micromonospora. I. Taxonomy, Production, Isolation, Characterization and Properties, J. Antibiot. 30, 443–449.

    PubMed  CAS  Google Scholar 

  276. Kinumaki, A., Harada, K., Suzuki, T., Suzuki, M., and Okuda, T. (1977) Macrolide Antibiotics M-4365 Produced by Micromonospora. II. Chemical Structures, J. Antibiot. 30, 450–454.

    PubMed  CAS  Google Scholar 

  277. Morin, R.B., Gorman, M., Hamil, R.L., and Demarco, P.V. (1970) The Structure of Tylosin, Tetrahedron Lett. 11, 4737–4740.

    Article  Google Scholar 

  278. Baltz, R.H., and Seno, E.T. (1981) Properties of Streptomyces fradiae Mutants Blocked in Biosynthesis of the Macrolide Antibiotic Tylosin, Antimicrob. Agents Chemother. 20, 214–225.

    PubMed  CAS  Google Scholar 

  279. Kirst, H.A., Wild, G.M., Baltz, R.H., Seno, E.T., Hamill, R.L., Paschal, J.W., and Dorman, D.E. (1983) Elucidation of Structure of Novel Macrolide Antibiotics Produced by Mutant Strains of Streptomyces fradiae, J. Antibiot. 36, 376–382.

    PubMed  CAS  Google Scholar 

  280. Kirst, H.A., Wild, G.M., Baltz, R.H., Hamill, R.L., Ott, J.L., Counter, F.T., and Ose, E.E. (1982) Structure-Activity Studies Among 16-Membered Macrolide Antibiotics Related to Tylosin, J. Antibiot. 35, 1675–1682.

    PubMed  CAS  Google Scholar 

  281. Hayashi, M., Kinoshita, K., Sudate, Y., Satoi, S., Sakakibara, H., Harada, K., and Suzuki, M. (1983) Mycinamicins, New Macrolide Antibiotics. VII. Structures of Minor Components, Mycinamicin VI and VII, J. Antibiot. 36, 175–178.

    PubMed  CAS  Google Scholar 

  282. Satoi, S., Muto, N., Hayashi, M., Fujii, T., and Otani, M. (1980) Mycinamicins, New Macrolide Antibiotics. I. Taxonomy, Production, Isolation, Characterization and Properties, J. Antibiot. 33, 364–376.

    PubMed  CAS  Google Scholar 

  283. Hayashi, M., Ohno, M., Katsumata, S., Satoi, S., Harada, K.I., Takeda, M., and Suzuki, M. (1981) Mycinamicins, New Macrolide Antibiotics. IV. Structure of Mycinamicin III, J. Antibiot. 34, 276–281.

    PubMed  CAS  Google Scholar 

  284. Kinoshita, K., Satoi, S., Hayashi, M., Harada, K., Suzuki, M., and Nakatsu, K. (1985) Mycinamicins, New Macrolide Antibiotics. VIII. Chemical Degradation and Absolute Configuration of Mycinamicins, J. Antibiot. (Tokyo) 38, 522–526.

    CAS  Google Scholar 

  285. Woo, P.W.K., Dion, H.W., and Bartz, Q.R. (1961) Chemistry of Chalcose, a 3-Methoxy-4,6-dideoxyhexose, J. Am. Chem. Soc. 83, 3352–3353.

    Article  CAS  Google Scholar 

  286. Woo, P.W.K., Dion, H.W., and Bartz, Q.R. (1962) A Degradation Product of Chalcomycin: 2,4-Dimethyl-3-chalsocyloxy-6-oxoheptanoic Acid, J. Am. Chem. Soc. 84, 1512–1513.

    Article  CAS  Google Scholar 

  287. Woo, P.W.K., Dion, H.W., and Johnson, L.F. (1962) The Stereochemistry of Chalcose, A Degradation Product of Chalcomycin, J. Am. Chem. Soc. 84, 1066–1067.

    Article  CAS  Google Scholar 

  288. Lefemine, D.V., Barbatschi, F., Dann, M., Thomas, S.O., Kunstmann, M.P., Mitscher, L.A., and Bohonos, N. (1963) Neutramycin, a New Neutral Macrolide Antibiotic, Antimicrob. Agents Chemother 9, 41–44.

    Google Scholar 

  289. Kunstmann, M.P., and Mitscher, L.A. (1965) Some Additional Observations on the Chemical Nature of Neutramycin, Experientia 21, 372–373.

    Article  PubMed  CAS  Google Scholar 

  290. Mitscher, L.A., and Kunstmann, M.P. (1969) The Structure of Neutramycin, Experientia 25, 12–13.

    Article  PubMed  CAS  Google Scholar 

  291. Hauske, J.R., Dibrino, J., Guadliana, M., and Kostek, G. (1986) Structure Elucidation of a New Neutral Macrolide Antibiotic, J. Org. Chem. 51, 2808–2814.

    Article  CAS  Google Scholar 

  292. Kunstmann, M.P., Mitscher, L.A., and Patterson, E.L. (1964) Aldgamycin E, a New Neutral Macrolide Antibiotic, Antimicrob. Agents Chemother. 10, 87–90.

    CAS  PubMed  Google Scholar 

  293. Mizobuchi, S., Mochizuki, J., Soga, H., Tanba, H., and Inoue, H. (1986) Aldgamycin G, a New Macrolide Antibiotic, J. Antibiot. 39, 1776–1778.

    PubMed  CAS  Google Scholar 

  294. Chatterjee, S., Reddy, G.C.S., Franco, C.M.M., Rupp, R.H., Ganguli, B.N., Fehlhaber, H.W., and Kogler, H. (1987) Swalpamycin, a New Macrolide Antibiotic. II. Structure Elucidation, J. Antibiot. 40, 1368–1374.

    PubMed  CAS  Google Scholar 

  295. Franco, C.M.M., Gandli, J.N., Chatterjee, S., and Ganguli, B.N. (1987) Swalpamycin, a New Macrolide Antibiotic. I. Taxonomy of the Producing Organism, Fermentation, Isolation and Biological Activity, J. Antibiot. 40, 1361–1367.

    PubMed  CAS  Google Scholar 

  296. Park, H.-R., Furihata, K., Hayakawa, Y., and Shin-ya, K. (2002) Versipelostatin, a Novel GRP78/Bip Molecular Chaperone Down-regulator of Microbial Origin, Tetrahedron Lett. 43, 6941–6945.

    Article  CAS  Google Scholar 

  297. Roy, B., and Lee, A.S. (1999) The Mammalian Endoplasmic Reticulum Stress Response Element Consists of an Evolutionarily Conserved Tripartite Structure and Interacts with a Novel Stress-Inducible Complex, Nucleic Acids Res. 27, 1437–1443.

    Article  PubMed  CAS  Google Scholar 

  298. Sausville, E.A. (2004) Versipelostatin: Unfolding an Unsweetened Death, J. Natl. Cancer Instit. 96, 1266–1267.

    Article  CAS  Google Scholar 

  299. Chijiwa, S., Park, H.-R., Furihata, K., Ogata, M., Endo, T., Kuzuyama, T., Hayakawa, Y., and Shin-ya, K. (2003) Biosynthetic Studies of Versipelostatin, a Novel 17-Membered α-Tetronic Acid Involved Macrocyclic Compound Isolated from Streptomyces versipellis, Tetrahedron Lett. 44, 5897–5900.

    Article  CAS  Google Scholar 

  300. Kitagawa, I., Ohashi, K., Baek, N.I., Sakagami, M., Yoshikawa, M., and Shibuya, H. (1997) Indonesian Medicinal Plants. XIX. 1) Chemical Structures of Four Additional Resin Glycosides, Mammosides A, B, H1 and H2, from the Tuber of Merremia mammosa (Convolvulaceae), Chem. Pharm. Bull. 45, 786–794.

    PubMed  CAS  Google Scholar 

  301. Omura, S., Tanaka, Y., Nakagawa, A., Iwai, Y., Inoue, M., and Tanaka, H. (1982) Irumamycin, a New Antibiotic Active Against Phytopathogenic Fungi, J. Antibiot. 35, 256–257.

    PubMed  CAS  Google Scholar 

  302. Fourati-Ben Fguira, L., Fotso, S., Ben Ameur-Mehdi, R., Mellouli, L., and Laatsch, H. (2005) Purification and Structure Elucidation of Antifungal and Antibacterial Activities of Newly Isolated Streptomyces sp. strain US80, Res. Microbiol., in press.

  303. Kinashi, H., Someno, K., and Sakaguchi, K. (1984) Isolation and Characterization of Concanamycins A, B and C, J. Antibiot. 37, 1333–1343.

    PubMed  CAS  Google Scholar 

  304. Malikova, M., Shi, J., and Kandror, K.V. (2004) V-type ATPase Is Involved in Biogenesis of GLUT4 Vesicles, Am. J. Physiol. Endocrinol. Metab. 287, E547-E552.

    Article  PubMed  CAS  Google Scholar 

  305. Hochlowski, J.E., Swanson, S.J., Ranfranz, L.M., Whittern, D.N., Buko, A.M., and McAlpine, J.B. (1987) Tiacumicins, a Novel Complex of 18-Membered Macrolide Antibiotics. II. Isolation and Structure Determination, J. Antibiot. 40, 575–588.

    PubMed  CAS  Google Scholar 

  306. Theriault, R.J., Karwowski, J.P., Jackson, M., Girolami, R.L., Sunga, G.N., Vojtko, C.M., and Coen, L.J. (1987) Tiacumicins, a Novel Complex of 18-Membered Macrolide Antibiotics. I. Taxonomy, Fermentation and Antibacterial Activity, J. Antibiot. 40, 567–574.

    PubMed  CAS  Google Scholar 

  307. Coronelli, C., White, R.J., Lancini, G.C., and Parenti, F. (1975) Lipiarmycin, A New Antibiotic from Actinoplanes. II. Isolation, Chemical Biological and Biochemical Characterization, J. Antibiot. 28, 253–259.

    PubMed  CAS  Google Scholar 

  308. Parenti, F., Pagan, H., and Beretta, G. (1975) Lipiarmycin, a New Antibiotic from Actinoplanes. I. Description of the Producer Strain and Fermentation Studies, J. Antibiot. 28, 247–252.

    PubMed  CAS  Google Scholar 

  309. Omura, S., Imamura, N., Oiwa, R., Kuga, H., Iwata, R., Masuma, R., and Iwai, Y. (1986) Clostomicins, New Antibiotics Produced by Micromospora echinospora subsp. armeniaca subsp. nov. I. Production, Isolation and Physicochemical and Biological Properties, J. Antibiot. 39, 1407–1412.

    PubMed  CAS  Google Scholar 

  310. Sergio, S., Pirali, G., White, R., and Parenti, F. (1975) Lipiarmycin, a New Antibiotic from Actinoplanes. III. Mechanism of Action, J. Antibiot. 28, 543–549.

    PubMed  CAS  Google Scholar 

  311. Bloor, S.J. (1998) A Macrocyclic Anthocyanin from Red/Mauve Carnation Flowers, Phytochemistry 49, 225–228.

    Article  CAS  Google Scholar 

  312. Nakayama, M., Koshioka, M., Yoshida, H., Kan, Y., Fukui, Y., Koike, A., and Yamaguchi, M.-A. (2000) Cyclic Malyl Anthocyanins in Dianthus caryophyllus, Phytochemistry 55, 937–939.

    Article  PubMed  CAS  Google Scholar 

  313. Gonnet, J.-F., and Fenet, B. (2000) “Cyclamen Red” Colors Based on a Macrocyclic Anthocyanin in Carnation Flowers, J. Agric. Food Chem. 48, 22–26.

    Article  PubMed  CAS  Google Scholar 

  314. Fukui, Y., Tanaka, Y., Kusumi, T., Iwashita, T., and Nomoto, K. (2003) A Rationale for the Shift in Colour Towards Blue in Transgenic Carnation Flowers Expressing the Flavonoid 3′,5′-Hydroxylase Gene, Phytochemistry 63, 15–23.

    Article  PubMed  CAS  Google Scholar 

  315. Shindo, K., Kamishohara, M., Odagawa, A., Matsuoka, M., and Kawai, H. (1993) Vicenistatin, a Novel 20-Membered Macrocyclic Lactam Antitumor Antibiotic, J. Antibiot. 46, 1076–1081.

    PubMed  CAS  Google Scholar 

  316. Ryu, G., Choi, W.C., Hwang, S., Yeo, W.H., Lee, C.S., and Kim, S.K. (1999) Tetrin C, a New Glycosylated Polyene Macrolide Antibiotic Produced by Streptomyces sp. GK9244, J. Nat. Prod. 62, 917–919.

    Article  PubMed  CAS  Google Scholar 

  317. Pathirana, C., Tapiolas, D., Jensen, P.R., Dwight, R., and Fenical, W. (1991) Structure Determination of Maduralide: A New 24-Membered Ring Macrolide Glycoside Produced by a Marine Bacterium (Actinomycetales), Tetrahedron Lett. 32, 2323–2326.

    Article  CAS  Google Scholar 

  318. Struyk, A.P., Hoette, I., Drost, G., Waisvisz, J.M., Van Eek, T., and Hoogerheide, J.C. (1957) Pimaricin, a New Antifungal Antibiotic, Antibiot. Annu. 5, 878–885.

    PubMed  Google Scholar 

  319. Gil, J.A., and Martin, J.F. (1997) Polyene Antibiotics, in Biotechnology of Antibiotics, 2nd edn. (Strohl, W.R., ed.), pp. 551–576, Marcel Dekker, New York.

    Google Scholar 

  320. Mendes, M.V., Recio, E., Fouces, R., Luiten, R., Martín, J.F., and Aparicio, J.F. (2001) Engineered Biosynthesis of Novel Polyenes: A Pimaricin Derivative Produced by Targeted Gene Disruption in Streptomyces natalensis, Chem. Biol. 8, 635–644.

    Article  PubMed  CAS  Google Scholar 

  321. Okami, Y., Utahara, R., Nakamura, S., and Umezawa, H. (1954) Studies on Antibiotic Actinomycetes. IX. On Streptomyces Producing a New Antifungal Substance Mediocidin and Antifungal Substances of Fungicidin-Rimocidin-Chromin Group, Eurocidin Group and Trichomycin-Ascosin-Candicidin Group, J. Antibiot. 7, 98–103.

    PubMed  CAS  Google Scholar 

  322. Osato, T., Ueda, M., Fukuyama, S., Yagishita, K., Okami, Y., and Umezawa, H. (1955) Production of Tertiomycin (a new antibiotic substance), Azomycin and Eurocidin by S. eurocidicus, J. Antibiot. 8, 105–109.

    PubMed  CAS  Google Scholar 

  323. Nakagomi, K., Takeuchi, M., Tanaka, H., Tomizuka, N., and Nakajima, T. (1990) Studies on Inhibitors of Rat Mast Cell Degranulation Produced by Microorganisms. I. Screening of Microorganisms, and Isolation and Physico-chemical Properties of Eurocidins C, D and E, J. Antibiot. (Tokyo) 43, 462–469.

    CAS  Google Scholar 

  324. Tanaka, Y., Komaki, H., Yazawa, K., Mikami, Y., Nemoto, A., Tojyo, T., Komaki, K., Shigemori, H., and Kobayashi, J. (1997) Brasilinolide A, a New Macrolide Antibiotic Produced by Nocardia brasiliensis: Producing Strain, Isolation and Biological Activity, J. Antibiot. 50, 1036–1041.

    PubMed  CAS  Google Scholar 

  325. Mikami, Y., Komaki, H., Imai, T., Yazawa, K., Nemoto, A., Tanaka, Y., and Graefe, U. (2000) A New Antifungal Macrolide Component, Brasilinolide B, Produced by Nocardia brasiliensis, J. Antibiot. 53, 70–74.

    PubMed  CAS  Google Scholar 

  326. Komatsu, K., Tsuda, M., Tanaka, Y., Mikami, Y., and Kobayashi, J. (2004) Absolute Stereochemistry of Immuno-suppressive Macrolide Brasilinolide A and Its New Congener Brasilinolide C, J. Org. Chem. 69, 1535–1541.

    Article  PubMed  CAS  Google Scholar 

  327. Kong, F., Liu, D.Q., Nietsche, J., Tischler, M., and Carter, G.T. (1999) Colubricidin A, a Novel Macrolide Antibiotic from a Streptomyces sp., Tetrahedron Lett. 40, 9219–9223.

    Article  CAS  Google Scholar 

  328. Brautaset, T., Sekurova, O.N., Sletta, H., Ellingsen, T.E., Strøm, A.R., Valla, S., and Zotchev, S.B. (2000) Biosynthesis of the Polyene Antifungal Antibiotic Nystatin in Streptomyces noursei ATCC 11455: Analysis of the Gene Cluster and Deduction of the Biosynthetic Pathway, Chem. Biol. 7, 395–403.

    Article  PubMed  CAS  Google Scholar 

  329. Oura, M., Sternberg, T.H., and Wright, E.T. (1955–1956) A New Antifungal Antibiotic, Amphotericin B, Antibiot. Annu. 3, 566–573.

    PubMed  Google Scholar 

  330. Gallis, H.A., Drew, R.H., and Pickard, W.W. (1990) Amphotericin B: 30 Years of Clinical Experience, Rev. Infect. Dis. 12, 308–329.

    PubMed  CAS  Google Scholar 

  331. Lechevalier, H. (1953) Fungicidal Antibiotics, Produced by Actinomycetes, Candicidin, Presse Med. 61, 1327–1328.

    PubMed  CAS  Google Scholar 

  332. Roberts, C.L., and Sullivan, J.J. (1965) Moniliasis. The Use of Candicidin Vaginal Ointment for Treatment, Calif. Med. 103, 109–111.

    PubMed  CAS  Google Scholar 

  333. Friedel, H.J. (1966) Candicidin, a New Vaginal Monilicide. A Test Series, MD State Med. J. 15, 36–37.

    PubMed  CAS  Google Scholar 

  334. Kivinen, S., Tarkkila, T., Laakso, L., Laakso, K. (1979) Short-Term Topical Treatment of Vulvovaginal Candidiasis with the Combination of 5-Fluorocytosine and Candicidin, Curr. Med. Res. Opin. 6, 88–92.

    PubMed  CAS  Google Scholar 

  335. Jensen, K.M., and Madsen, P.O. (1983) Candicidin Treatment of Prostatism: A Prospective Double-Blind Placebo-Controlled Study, Urol. Res. 11, 7–10.

    Article  PubMed  CAS  Google Scholar 

  336. Grabley, S., Kretzschmar, G., Mayer, M., Phillips, S., Thiericke, R., Wink, R., and Zeeck, A. (1993) Secondary Metabolites by Chemical-Screening. 2. Oasomycins, New Macrolactones of the Desertomycin Family, Liebigs Ann. Chem. 5, 573–579.

    Google Scholar 

  337. Dolak, L.A., Reusser, F., Baczynskyj, L., Mizsak, S.A., Hannon, B.R., and Castle, T.M. (1983) Desertomycin: Purification and Physical-Chemical Properties, J. Antibiot. 36, 13–19.

    PubMed  CAS  Google Scholar 

  338. Uri, J.V. (1986) Desertomycin—A Potentially Interesting Antibiotic (a review), Acta Microbiol. Hung 33, 271–283.

    PubMed  CAS  Google Scholar 

  339. Mukhopadhyay, T., Nadkarni, S.R., Bhat, R.G., Gupte, S.V., Ganguli, B.N., Petry, S., and Kogler, H. (1999) Mathemycin B, a New Antifungal Macrolactone from Actinomycete Species HIL Y-8620959, J. Nat. Prod. 62, 889–890.

    Article  PubMed  CAS  Google Scholar 

  340. Mukhopadhyay, T., Vijayakumer, E.K.S., Nadkarni, S.R., Fehlhader, H.W., Kogler, H., and Petry, S. (1998) Mathemycin A, a New Antifungal Macrolactone from Actinomycete sp. HIL Y-8620959—II. Structure Elucidation, J. Antibiot. 51, 582–585.

    PubMed  CAS  Google Scholar 

  341. Nadkarni, S.R., Mukhopadhyay, T., Bhat, R.G., Gupte, S.V., Ganguli, B.N., and Sachse, B. (1998) Mathemycin A, a New Antifungal Macrolactone from Actinomycete sp. HIL Y-8620959—I. Fermentation, Isolation, Physico-chemical Properties and Biological Activities, J. Antibiot. 51, 579–581.

    PubMed  CAS  Google Scholar 

  342. York, W.S. (1995) A Conformational Model for Cyclic β-(1→2)-Linked Glucans Based on NMR Analysis of the β-Glucans Produced by Xanthomonas campestris, Carbohydr. Res. 278, 205–225.

    Article  PubMed  CAS  Google Scholar 

  343. Kates, M., Kushner, D.J., and Matheson, A.T. (eds.) (1993) The Biochemistry of Archaea, Elsevier, New York.

    Google Scholar 

  344. Uda, I., Sugai, A., Itoh, Y.H., and Itoh, T. (2001) Variation in Molecular Species of Polar Lipids from Thermoplasma acidophilum Depends on Growth Temperature, Lipids 36, 103–105.

    Article  PubMed  CAS  Google Scholar 

  345. Uda, I., Sugai, A., Kon, K., Ando, S., Itoh, Y.H., and Itoh, T. (1999) Isolation and Characterization of Novel Neutral Glycolipids from Thermoplasma acidophilum, Biochim. Biophys. Acta 1439, 363–370.

    PubMed  CAS  Google Scholar 

  346. Matsumura, S., Imai, K., Yoshikawa, S., Kawada, K., and Uchirobi, T. (1990) Bola-form Amphiphilic Compounds: Their Surface Activities, Biodegradability, and Antimicrobial Properties, J. Am. Oil Chem. Soc. 67, 996–1001.

    Article  CAS  Google Scholar 

  347. Müllerfahrnow, A., Saenger, W., Fritsch, D., Schneider, P., and Fuhrhop, J.-H. (1993) Molecular and Crystal Structure of the Bola-Amphiphile n-[8-(d-gluconamido)octyl]-d-gluconamide, Carbohydr. Res. 242, 11–20.

    Article  Google Scholar 

  348. Munoz, S., Mallen, J., Nakano, A., Chen, Z., Gay, I., Echegoyen, L., and Gokel, G.W. (1993) Ultrathin Monolayer Lipid Membranes from a New Family of Crown Ether-Based Bola-Amphiphiles, J. Am. Chem. Soc. 115, 1705–1711.

    Article  CAS  Google Scholar 

  349. Newkome, G.R., Moorefield, C.N., Baker, G.R., Behera, R.K., Escamilla, G.H., and Saunders, M.J. (1992) Chemistry of Micelles. 16. Supramolecular Self-Assemblies of 2-Directional Cascade Molecules—Automorphogenesis, Angew. Chem. Int. Ed. Engl. 31, 917–919.

    Article  Google Scholar 

  350. Fuhrhop, J.-H., Spiroski, D., and Boettcher, C. (1993) Molecular Monolayer Rods and Tubules Made of α-(l-lysine),ω-(amino) Bolaamphiphiles, J. Am. Chem. Soc. 115, 1600–1601.

    Article  CAS  Google Scholar 

  351. Jayasuriya, N., Bosak, S., and Regen, S.L. (1990) Design, Synthesis, and Activity of Membrane-Disrupting Bolaphiles, J. Am. Chem. Soc. 112, 5844–5850.

    Article  CAS  Google Scholar 

  352. Jayasuriya, N., Bosak, S., and Regen, S.L. (1990) Supramolecular Surfactants: Polymerized Bolaphiles Exhibiting Extraordinarily High Membrane-Disrupting Activity, J. Am. Chem. Soc. 112, 5851–5854.

    Article  CAS  Google Scholar 

  353. Moss, R.A., and Li, J.-M. (1992) Bilayer-Bridging Bolaamphiphilic Lipids, J. Am. Chem. Soc. 114, 9227–9229.

    Article  CAS  Google Scholar 

  354. Yamauchi, K., and Kinoshita, M. (1993) Highly Stable Lipid-Membranes from Archaebacterial Extremophiles, Prog. Polym. Sci. 18, 763–804.

    Article  CAS  Google Scholar 

  355. Bertho, J.-N., Coué, A., Ewing, D.F., Goodby, J.W., Letellier, P., Mackenzie, G., and Plusquellec, D. (1997) Novel Sugar Bola-Amphiphiles with a Pseudo Macrocyclic Structure, Carbohydrate Res. 300, 341–346.

    Article  CAS  Google Scholar 

  356. Satgé, C., Granet, R., Verneuil, B., Champavier, Y., and Krausz, P. (2004) Synthesis and Properties of New Bolaform and Macrocyclic Galactose-Based Surfactants Obtained by Olefin Metathesis, Carbohydrate Res. 339, 1243–1254.

    Article  CAS  Google Scholar 

  357. Nyman, E.S., and Hynninen, P.H. (2004) Research Advanced in the Use of Tetrapyrrolic Photosensitizers for Photodynamic Therapy, J. Photochem. Photobiol. B: Biol. 73, 1–28.

    Article  CAS  Google Scholar 

  358. Sessler, J.L., and Miller, R.A. (2000) Texaphyrins: New Drugs with Diverse Clinical Applications in Radiation and Photodynamic Therapy, Biochem. Pharmacol. 59, 733–739.

    Article  PubMed  CAS  Google Scholar 

  359. Sharman, W.M., Allen, C.M., Van Lier, A.E., and Van Lier, J.E. (1999) Photodynamic Therapeutics: Basic Principles and Clinical Applications, Drug Discov. Today 4, 507–517.

    Article  PubMed  CAS  Google Scholar 

  360. Dolphin, D. (1994) Photomedicine and Photodynamic Therapy, Can. J. Chem. 72, 1005–1013.

    Article  CAS  Google Scholar 

  361. Synytsya, A., Král, V., Blechová, M., and Volka K. (2004) Biolocalisation and Photochemical Properties of Two Novel Macrocyclic Photosensitisers: A Spectroscopic Study, J. Photochem. Photobiol. B: Biol. 74, 73–84.

    Article  CAS  Google Scholar 

  362. Fujimoto, K., Miyata, T., and Aoyama, Y. (2000) Saccharide-Directed Cell Recognition and Molecular Delivery Using Macrocyclic Saccharide Clusters: Masking of Hydrophobicity to Enhanced the Saccharide Specificity, J. Am. Chem. Soc. 122, 3558–3559.

    Article  CAS  Google Scholar 

  363. Menger, F.M., Bian, J., Sizova, E., Martinson, D.E., and Seredyuk, V.A. (2004) Bolaforms with Fourteen Galactose Units: A Proposed Site-Directed Cohesion of Cancer Cells, Org. Lett. 6, 261–264.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery M. Dembitsky.

About this article

Cite this article

Dembitsky, V.M. Astonishing diversity of natural surfactants: 2. Polyether glycosidic ionophores and macrocyclic glycosides. Lipids 40, 219–248 (2005). https://doi.org/10.1007/s11745-005-1378-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-005-1378-0

Keywords

Navigation