Log in

Physicochemical Studies on the Interfacial and Bulk Behaviors of Sodium N-Dodecanoyl Sarcosinate (SDDS)

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Sodium N-dodecanoyl sarcosinate (SDDS), a novel amino-acid based surfactant, has immense biological and industrial importance. Although it is being used in a number of cosmetic formulations, systematic analysis of the bulk and interfacial properties of the surfactant is scarce in the literature. In this study, effects of salt, temperature, and pH on the self-association and related properties of SDDS have been examined in detail using methods such as tensiometry, conductometry, fluorimetry, pH-metry, spectrophotometry, calorimetry, and circular dichroism. The nature of amphiphilic packing and the aggregation numbers of the assemblies have been deciphered. Properties of the acid form of the surfactant have also been explored. The results have been conceptually rationalized and systematically presented together with associated energetics of the interfacial adsorption and self-aggregation of the surfactant in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HDDS:

Dodecanoyl sarcosinic acid

MDGA:

N-methyl-N-decanoyl glucamide

SDS:

Sodium dodecyl sulfate

SDDS:

Sodium N-dodecanoyl sarcosinate

References

  1. Miyagishi S, Ishibai Y, Asakawa T, Nishida M (1985) Critical micelle concentration in mixtures of N-acyl amino acid surfactants. J Colloid Interface Sci 103:164–169

    Article  CAS  Google Scholar 

  2. Valivety T, Jauregi P, Gill IS, Vulfson EN (1997) Chemo-enzymatic synthesis of amino acid-based surfactants. J Am Oil Chem Soc 74:879–886

    Article  CAS  Google Scholar 

  3. Valivety R, Gill IS, Vulfson EN (1998) Application of enzymes to the synthesis of amino acid-based bola and gemini surfactants. J Surf Deterg 1:177–185

    Article  CAS  Google Scholar 

  4. Moran MC, Pinazo A, Perez L, Clapes P, Angelet M, Garcia MT, Vinardell MP, Infante MR (2004) “Green” amino acid-based surfactants. Green Chem 6:233–240

    Article  CAS  Google Scholar 

  5. George A, Modi J, Jain N, Bahadur P (1998) A Comparative study on the surface activity and micellar behavior of some N-acylamino acid based surfactants. Indian J Chem 37:985–992

    Google Scholar 

  6. Varade D, Bahadur P (2005) Interaction in mixed micellization of sodium N-tetradecanoylsarcosinate with ionic and nonionic surfactants. J Dispers Sci Technol 26:549–554

    Article  CAS  Google Scholar 

  7. Spivack JD (1976) In: Linfield WM (ed) Anionic surfactants. Marcel Dekker, New York

    Google Scholar 

  8. Lanigan RS (2001) Final report on the safety assessment of cocoyl sarcosine, lauroyl sarcosine, myristoyl sarcosine, oleoyl sarcosine, stearoyl sarcosine, sodium cocoyl sarcosinate, sodium lauroyl sarcosinate, sodium myristoyl sarcosinate, ammonium cocoyl sarcosinate and ammonium lauroyl sarcosinate. Int J Toxicol 20(Suppl. 1):1–14 Published by Informa Healthcare

    CAS  Google Scholar 

  9. Castillo EJ, Han WW, Gerson SH (2000) Use of certain anionic amino acid based surfactants to enhance antimicrobial effectiveness of topically administrable pharmaceutical compositions. United States Patent 6,146,622

  10. Orr TV, Sabatelli AD (1992) Skin conditioning composition and method. European Patent EP0283165

  11. Schmidt et al (1986) European Patent Application No.0194097EP assigned to Procter and Gamble mentions sodium lauroyl sarcosinate as the mild anionic surfactant utilized in an aerosol skin-cleansing and moisturizer mousse

  12. Ecochem, Ingredients of eco-solutions

  13. Tsubone K, Rosen MJ (2001) Structural effect on surface activities of anionic surfactants having N-acyl-N-methylamide and carboxylate groups. J Colloid Interface Sci 244:394–398

    Article  CAS  Google Scholar 

  14. Fuguet E, Rafóls C, Róses M, Bosch E (2005) Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal Chim Acta 548:95–100

    Article  CAS  Google Scholar 

  15. Sehgal P, Doe H, Bakshi M (2004) Interfacial and micellar properties of binary mixtures of surfactant and phospholipid in an aqueous medium. Colloid Polym Sci 281:275–282

    Article  Google Scholar 

  16. Dan A, Chakraborty I, Ghosh S, Moulik SP (2007) Interfacial and bulk behavior of sodium dodecylsulfate in isopropanol–water and in isopropanol–poly (Vinylpyrrolidone)–water media. Langmuir 23:7531–7538

    Article  CAS  Google Scholar 

  17. Chatterjee A, Moulik SP, Sanyal SK, Mishra BK, Puri PM (2001) Thermodynamics of micelle formation of ionic surfactants: a critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric and tensiometric measurements. J Phys Chem B 105:12823–12831

    Article  CAS  Google Scholar 

  18. Chatterjee A, Maiti S, Sanyal SK, Moulik SP (2002) Micellization and related behaviors of N-cetyl-N-ethanolyl-N, N-dimethyl and N-cetyl-N, N-diethanolyl-N-methyl ammonium bromide. Langmuir 18:2998–3004

    Article  CAS  Google Scholar 

  19. Prasad M, Chakraborty I, Rakshit AK, Moulik SP (2006) A critical evaluation of micellization behavior of a nonionic surfactant MEGA 10 in comparison with an ionic surfactant tetradecyltriphenylphosphonium bromide studied by microcalorimetric method in aqueous medium. J Phys Chem B 110:9815–9821

    Article  CAS  Google Scholar 

  20. Da Graca Miguel M, Eidelman O, Ollivon M, Walter A (1989) Temperature dependence of the vesicle-micelle transition of egg phosphatidylcholine and octyl glucoside. Biochemistry 28:8921–8928

    Article  CAS  Google Scholar 

  21. Keller M, Kerth A, Blume A (1997) Thermodynamics of interaction of octyl glucoside with phosphatidylcholine vesicles: partitioning and solubilization as studied by high sensitivity titration calorimetry. Biochim Biophys Acta 1326:178–192

    Article  CAS  Google Scholar 

  22. Chatterjee A, Dey T, Sanyal SK, Moulik SP (2001) Thermodynamic of micelle formation and surface chemical behavior of p-tert-octylphenoxypolyoxyethylene ether (TritonX-100) in aqueous medium. J Surf Sci Tech 17:1–16

    CAS  Google Scholar 

  23. Becher P (1967) In: Schick MJ (ed) Nonionic surfactants. Marcel Dekker, New York ch. 15

    Google Scholar 

  24. La Messa C (1990) Dependence of critical micelle concentrations on intensive variables: a reduced variable analysis. J Phys Chem 94:323–326

    Article  Google Scholar 

  25. Abu-Hamdiyyah M, Al-Mansour L (1979) Effect of butylurea on the critical micelle concentration of sodium lauryl sulfate in water at different temperatures. J Phys Chem 83:2236–2243

    Article  CAS  Google Scholar 

  26. Benrraou M, Bales BL, Zana R (2003) Effect of the nature of the counterion on the properties of anionic surfactants.1. Cmc, ionization degree at the CMC and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. J Phys Chem B 107:13432–13440

    Article  CAS  Google Scholar 

  27. Ribiero ACF, Lobo VMM, Valente AJM, Azevedo EFG, da Graca Miguel M, Burrows HD (2004) Transport properties of alkyltrimethylammonium bromide surfactants in aqueous solutions. Colloid Polym Sci 283:277–283

    Article  Google Scholar 

  28. Delisi R, Inglese A, Milioto S, Pellerito A (1997) Demixing of mixed micelles. Thermodynamics of perfluorooctanoate-sodium dodecanoate mixtures in water. Langmuir 13:192–202

    Article  CAS  Google Scholar 

  29. Basu Ray G, Chakraborty I, Ghosh S, Moulik SP, Palepu R (2005) Self-aggregation of alkyltrimethylammonium bromides (C10–, C12–, C14–, and C16TAB) and their binary mixtures in aqueous medium: a critical and comprehensive assessment of interfacial behavior and bulk properties with reference to two types of micelle formation. Langmuir 21:10958–10967

    Article  Google Scholar 

  30. Basu Ray G, Chakraborty I, Ghosh S, Moulik SP (2007) A critical and comprehensive assessment of interfacial and bulk properties of aqueous binary mixtures of anionic surfactants, sodium dodecylsulfate, and sodium dodecylbenzenesulfonate. Colloid Polym Sci 285:457–469

    Article  CAS  Google Scholar 

  31. Basu Ray G, Chakraborty I, Ghosh S, Moulik SP (2007) On mixed binary surfactant systems comprising MEGA 10 and alkyltrimethylammonium bromides: a detailed physicochemical study with a critical analysis. J Colloid Interface Sci 307:543–553

    Article  Google Scholar 

  32. Buckingham SA, Garvey CJ, Warr GG (1993) Effect of head-group size on micellization and phase behavior in quaternary ammonium surfactant systems. J Phys Chem 97:10236–10244

    Article  CAS  Google Scholar 

  33. Kale KM, Cussler EL, Evans DF (1980) Characterization of micellar solutions using surfactant ion electrodes. J Phys Chem 84:593–598

    Article  CAS  Google Scholar 

  34. Bandyopadhyay A, Moulik SP (1988) Counterion binding behavior of micelles of sodium dodecyl sulphate and bile salts in the pure state, in mutually mixed states and mixed with a nonionic surfactant. Colloid Polym Sci 266:455–461

    Article  CAS  Google Scholar 

  35. Chakraborty I, Moulik SP (2007) Self-aggregation of ionic C10 surfactants having different headgroups with special reference to the behavior of decyltrimethylammonium bromide in different salt environments: a calorimetric study with energetic analysis. J Phys Chem B 111:3658–3664

    Article  CAS  Google Scholar 

  36. Moroi Y (1992) Micelle: theoretical and applied aspects. Plenum, New York

    Google Scholar 

  37. Kresheck GC (1998) Comparison of the calorimetric and van’t Hoff enthalpy of micelle formation for a nonionic surfactant in H2O and D2O Solutions from 15 to 40 °C. J Phys Chem 102:6596–6600

    CAS  Google Scholar 

  38. Kresheck GC, Hargraves WA (1974) Thermometric titration studied of the effect of head group, chain length, solvent, and temperature on the thermodynamics of micelle formation. J Colloid Interface Sci 48:481–493

    Article  CAS  Google Scholar 

  39. Israelachvili JN (1991) Intermolecular and surface forces, chapter 17, 2nd edn. Academic Press, London, p 370

    Google Scholar 

  40. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley, New York

    Google Scholar 

  41. Hart JR (1979) N-acyl sarcosine surfactants. Cosmet Toiletries 94:74–76

    CAS  Google Scholar 

  42. Zhang Y, Cremer PS (2006) Interaction between macromolecules and ions: the Hoffmeister series. Curr Opin Chem Biol 10:658–663

    Article  CAS  Google Scholar 

  43. **aodong M, Pawlik M (2006) Adsorption of guar gums onto quartz from dilute mixed electrolyte solutions. J Colloid Interface Sci 298:609–614

    Article  Google Scholar 

  44. Corrin ML, Harkins WD (1947) The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes. J Am Chem Soc 69:683–688

    Article  CAS  Google Scholar 

  45. Fujio K (1998) The salt-induced sphere-rod transition of micelles of 1-tetradecylpyridinium bromide in aqueous NaBr solutions. Bull Chem Soc Jpn 71:83–89

    Article  CAS  Google Scholar 

  46. Fujio K, Ikeda S (1991) Size of spherical micelles of dodecylpyridinium bromide in aqueous NaBr solutions. Langmuir 7:2899–2903

    Article  CAS  Google Scholar 

  47. Haldar J, Aswal VK, Goyal PS, Bhattacharya S (2005) Micellar association in simultaneous presence of organic salts/additives. J Colloid Interface Sci 282:156–161

    Article  CAS  Google Scholar 

  48. Kim W-J, Yang S-M (2000) Unusual micellar properties of multiheaded cationic surfactants in the presence of strong charge neutralizing salts. J Colloid Interface Sci 232:225–234

    Article  CAS  Google Scholar 

  49. Kumar S, Khan ZA, Kabir-ud-din (2002) Effects of sodium salicylate on the microstructure of an aqueous micellar solution and its rheological response. J Surf Deterg 5:55–59

    Article  CAS  Google Scholar 

  50. Leontidis E (2002) Hoffmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr Opin Colloid Interface Sci 7:81–91

    Article  CAS  Google Scholar 

  51. Bostrom M, Williams DR, Ninham BW (2004) Why the properties of proteins in salt solutions follow a Hoffmeister series. Curr Opin Colloid Interface Sci 9:48–52

    Article  CAS  Google Scholar 

  52. Rakshit PC (1988) In: Rakshit SC (ed) Physical chemistry. Sarat Book House, Kolkata, India

    Google Scholar 

  53. Aswal VK, Goyal PS (2000) Counterions in the growth of ionic micelles in aqueous electrolyte solutions: a small-angle neutron scattering study. Phys Rev E 61:2947–2953

    Article  CAS  Google Scholar 

  54. Okawauchi M, Hagio M, Ikawa Y, Sugihara G, Murata Y, Tanaka M (1987) A light-scattering study of temperature effect on micelle formation of N-alkanoyl-N-methylglucamines in aqueous solution. Bull Chem Soc Jpn 60:2719–2725

    Article  CAS  Google Scholar 

  55. Prasad M, Moulik SP, Mc Donald A, Palepu R (2004) Self-aggregation of alkyl (C10–, C12–, C14–, C16–) triphenyl phosphonium bromides and their 1:1 molar mixtures in aqueous medium: a thermodynamic study. J Phys Chem B 108:355–362

    Article  CAS  Google Scholar 

  56. Basu Ray G, Chakraborty I, Ghosh S, Moulik SP, Holgate C, Glenn K, Palepu RM (2007) Studies on binary and ternary amphiphile combinations of tetradecyl trimethylammonium bromide (C14TAB), tetradecyltriphenylphosphonium bromide (C14TPB), and tetradecylpyridinium bromide (C14PB). A critical analysis of their interfacial and bulk behaviors. J Phys Chem B 111:9828–9837

    Article  Google Scholar 

  57. Akisada H, Kuwahara J, Kunisaki M, Nishikawa K, Akagi S, Wada M, Kuwata A, Iwamoto S (2004) A circular dichroism study of the interaction between n-decanoyl-N-methylglucamide and surface active agents in mixed micelles. Colloid Polym Sci 283:169–173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G. Basu Ray thanks the CSIR, Govt. of India, for a Research Fellowship and SPM thanks the INSA for a Honorary Scientist position to perform this work. SG thanks DST (SR/FTP/CS-35/2006) for support with a first track project. The authors also thank Ms. D. Mitra and Mr. A. Dan for calorimetric and fluorometric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Moulik.

About this article

Cite this article

Ray, G.B., Ghosh, S. & Moulik, S.P. Physicochemical Studies on the Interfacial and Bulk Behaviors of Sodium N-Dodecanoyl Sarcosinate (SDDS). J Surfact Deterg 12, 131–143 (2009). https://doi.org/10.1007/s11743-008-1105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-008-1105-3

Keywords

Navigation