Log in

A numerical embedding method for solving the nonlinear optimization problem

  • Applied Mathematics And Mechanics
  • Published:
Journal of Shanghai University (English Edition)

Abstract

A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equations were proved. Therefore the basic theory for the algorithm of the numerical embedding method for solving the non-linear optimization problem was established. Based on the theoretical results, a numerical embedding algorithm was designed for solving the nonlinear optimization problem, and prove its convergence carefully. Numerical experiments show that the algorithm is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsckas D M. Constrained Optimization and Lagrange Multiplier Methods [M]. Academic Press, New York, 1982.

    Google Scholar 

  2. Gill P E, Murray W, Wright M H. Practical Optimization [M]. Academic Press, London,1981.

    Google Scholar 

  3. Kojima M. Strongly stable stationary solutions in nonlin-ear programs[A]. Analysis and Computation of Fixed Points[C]. S. M. Robinson ed., Academic Press, New York, 1980,93–138.

    Google Scholar 

  4. Pang J S. Newton’s method for B-differentiable equations[J]. Math. Oper. Res.,1990,15:311–341.

    MATH  MathSciNet  Google Scholar 

  5. **ao B, Harker P T. A nonsmooth Newton method for variational inequalities I: theory, II : Numerical results [J]. Math. Prog., 1994,65:151–216.

    Article  MathSciNet  Google Scholar 

  6. Robinson S M. Local structure of feasible sets in nonlinear programming, Part III:stability and sensitivity[J]. Math. Prog. Study,1987,30:45–66.

    MATH  Google Scholar 

  7. Shapiro A. On concepts of directional differentiability [J]. JOTA,1990,66:477–487.

    Article  MATH  Google Scholar 

  8. Robinson S M. Mathematical foundation of nonsmooth embedding methods[J]. Math. Prog., 1990,48:221–229.

    Article  MATH  Google Scholar 

  9. Wang Deren, Zhang Jianjun. Solving the nonlinear complementarity problem by generalized Newton method[J]. Numer. Math, of Chinese Univ.,1999,21:333–342.

    MATH  Google Scholar 

  10. Fukushima M. A relaxed projection method for variational inequalities[J]. Math. Prog.,1986,35:58–70.

    Article  MATH  MathSciNet  Google Scholar 

  11. Harker P T, **ao B. Newton’s method for the nonlinear complementarity problem: A B-differentiable equation approach[J]. Math. Prog.,1990,48:339–357.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ip C M, Kyparisis J. Local convergence of quasi-Newton methods for B-differentiable equations [J]. Math. Prog., 1992,56:71–90.

    Article  MATH  MathSciNet  Google Scholar 

  13. Mangasarian O L. Equivalence of the complementarity problem to a system of nonlinear equations[J]. SIAM J. Appl. Math., 1976,31:89–92.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ortega J M, Rheinboldt W C. Iterative Solution of Nonlinear Equations in Several Variables [M]. Academic Press, New York, 1970.

    Google Scholar 

  15. Pang J S, Gabriel S A. NE/SQP: A robust algorithm for the nonlinear complementarity problem [J]. Math. Prog., 1993,60:295–337.

    Article  MathSciNet  Google Scholar 

  16. Pang J S, Qi L. Nonsmooth equations: Motivation and algorithms[J]. SIAM J. Opti.,1993,3:443–465.

    Article  MATH  MathSciNet  Google Scholar 

  17. Qi L. Convergence analysis of some algorithms for solving nonsmooth equations[J]. Math. Oper. Res., 1993, 18:227–244.

    Article  MATH  MathSciNet  Google Scholar 

  18. Qi L, Sun J. A nonsmooth version of Newton’s method [J]. Math. Prog., 1993,58:353–367.

    Article  MathSciNet  Google Scholar 

  19. Zhang Jianjun, Wang Deren. A numerical embedding method for solving nonlinear complementarity problem (I ) — theory, JCM,2002,20:257–266.

    MATH  Google Scholar 

  20. Zhang Jianjun, Wang Deren. On the convergence of generalized Newton method[J]. ACTA Math. Appl. Sinica, 1999,22:513–521.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 10271075) and the Science and Technology Develo** Foundation of Universities in Shanghai

About this article

Cite this article

Tian, BF., Dai, YX., Meng, ZH. et al. A numerical embedding method for solving the nonlinear optimization problem. J. of Shanghai Univ. 7, 327–339 (2003). https://doi.org/10.1007/s11741-003-0005-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11741-003-0005-z

Key words

MSC 2000

Navigation