Log in

Chromium-induced phytotoxicity and its impact on plant metabolism

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Chromium (Cr) is a familiar heavy element and is mainly available in nature with a couple of stable oxidation states such as Cr+3 and Cr+6. Its soil–plant transfer is accomplished mostly by sulphate or iron ions which serve as carriers without a transport system. The entry of Cr+6 into the plant cells induces biochemical, molecular, cytotoxic and genotoxic alterations leading to the inhibition of seed germination, seedling growth and subsequent development. The harmful effects of Cr+6/Cr+3 on plants comprise growth inhibition of roots, shoots and leaves which affect plant biomass and productivity. Cr+6/Cr+3 also causes detrimental consequences on many plant metabolic processes, viz. absorption of water, mineral uptake, hormonal distribution, flowering, senescence, photosynthesis, respiration, carbohydrate, nitrogen, lipid and stress metabolism. Chromium induces phytotoxicity by the generation of free oxygen radicals, while antioxidant enzyme may alleviate the stress. Basically, plant stress resistance may occur through either an avoidance or tolerance mechanisms. The studies in this review highlight the behaviour of Cr in the soil plant system, Cr-speciation, Cr-phytoavailability and Cr-phytotoxicity with fragmentary information on Cr-induced toxicity effects on plant metabolism. Thus, this comprehensive review addresses available information published during the last 3–4 decades. We focussed on the inhibition of growth and development by ions of chromium, starting from seed germination, and with an emphasis on metabolic processes in plant organs. The issue of plant stress resistance mechanisms was also included. We suggest the need to reduce pollution with chromium compounds for a cleaner environment and ensuring the security of sustainable developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrees M, Ali S, Rizwan M, Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of Silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicol Environ Saf 119:186–187

    CAS  PubMed  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York. https://doi.org/10.1007/978-1-4757-1907-9

    Article  Google Scholar 

  • Afonso TF, Demarco CF, Pieniz S, Camargo FAO, Quadro MS, Andreazza R (2019) Potential of Solanum viarum Dunal in use for phytoremediation of heavy metals to mining areas, Southern Brazil. Environ Sci Pollut Res 26:241332–324142

    Google Scholar 

  • Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F, Ibrahim M, Mehmood MA, Abbasi GH (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22:11679–11689

    CAS  Google Scholar 

  • Ahmad M, Wahid A, Ahmad SS, Butt ZA, Tariq M (2011) Ecophysiological responses of rice (Oryza sativa L.) to hexavalent chromium. Pak J Bot 43:2853–2859

    CAS  Google Scholar 

  • Ahmad R, Ali S, Hannan F, Rizwan M, Iqbal M, Hassan Z, Akram NA, Maqbool S, Abbas F (2017) Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.). Environ Sci Pollut Res 24:8814–8824

    CAS  Google Scholar 

  • Akinci IE, Akinci S (2010) Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). Afr J Biotechnol 9:4589–4594

    CAS  Google Scholar 

  • Akli Ouelhadj A, Kuschk P, Humbeck K (2006) Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-dependent novel C2domain-like protein. New Phytol 170:261–273

    PubMed  Google Scholar 

  • Al Mahmud J, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromiu tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216–226

    CAS  Google Scholar 

  • Ali NA, Dewez D, Didur O, Popovic R (2006) Inhibition of photosystem II photochemistry by Cr is caused by the alteration of both D1 protein and oxygen evolving complex. Photosyn Res 89:81–87

    CAS  Google Scholar 

  • Ali S, Zeng F, Qiu L, Zhang G (2011) The effect of chromium and aluminum on growth, root morphology, photosynthetic parameters and transpiration of the two barley cultivars. Biol Plant 55:291–296

    CAS  Google Scholar 

  • Ali B, Wang B, Ali S, Ghani M, Hayat M (2013) 5-Aminolevulinic acid amelioratesthe growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul 32:604–614

    CAS  Google Scholar 

  • Ali S, Chaudhary A, Rizwan M, Anwar HT, Adrees M (2015) Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ Sci Pollut Res 22:10669–10678

    CAS  Google Scholar 

  • Ali S, Rizwan M, Bano R, Bharwana SA, Rehman MZ (2018) Effects of biochar on growth, photosynthesis, and chromium (Cr) uptake in Brassica rapa L. under Cr stress. Arab J Geosci 11:507

    Google Scholar 

  • Andosch A, Hoeftberger M, Luetz C, Luetz-Meindl U (2015) Subcellular sequestration and impact of heavy metals on the ultrastructure and physiology of the multicellular freshwater alga Desmidium swartzii. Int J Mol Sci 16:10389–10410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Ashraf U, Khan I, Tanveer M, Saleem MF, Wang L (2016) Aluminum and chromium toxicityin maize: implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations and metal accumulation in dierent plant parts. Water Air Soil Pollut 227:326

    ADS  Google Scholar 

  • Anjum SA, Ashraf U, Khan I, Tanveer M, Shahid M, Shakoor A, Wang L (2017) Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere 27:262–273

    CAS  Google Scholar 

  • Ao M, Chen X, Deng T, Sun S, Tang Y, Morel Louis J, Qiu R, Wang S (2022) Chromium biogeochemical behavior in soil plant systems and remediation strategies: a critical review. J Hazard Mater 424:127233

    CAS  PubMed  Google Scholar 

  • Atici O, Agar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222

    CAS  Google Scholar 

  • Austenfeld FA (1979) The effect of Ni, Co and Cr on net photosynthesis of primary and secondary leaves of Phaseolus vulgaris L. Photosynthetica 13:434–438

    CAS  Google Scholar 

  • Azcon-Bieto J (1983) Inhibition of photosynthesis by carbohydrates in wheat leaves. Plant Physiol 73:681–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bah AM, Dai H, Zhao J, Sun H, Cao F (2011) Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Biol Trace Elem Res 142:77–92

    CAS  PubMed  Google Scholar 

  • Balal RM, Shahid MA, Vincent C, Zotarelli L, Liu G, Mattson NS, Rathinasabapathi B, Martinez-Nicolas JJ, Garcia-Sanchez F (2017) Kinnow mandarin plants grafted on tetraploid rootstocks are more tolerant to Cr-toxicity than those grafted on its diploids one. Environ Exp Bot 140:8–18

    CAS  Google Scholar 

  • Balasaraswathi K, Jayaveni S, Sridevi J, Sujatha D, Aaron KP, Rose C (2017) Cr-induced cellular injury and necrosis in Glycine max L.: biochemical mechanism of oxidative damage in chloroplast. Plant Physiol Biochem 118:653–666

    CAS  PubMed  Google Scholar 

  • Balestrasse KB, Gallego SM, Benavides MP, Tomaro ML (2005) Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants. Plant Soil 270:343–353

    CAS  Google Scholar 

  • Barcelo J, Poschenrieder C, Vazquez MD, Gunse B, Vernet JP (1993) Beneficial and toxic effects of chromium in plants: solution culture, pot and field studies. Studies in Environmental Science No. 55, Paper Presented at the 5th International Conference on Environmental Contamination, Morges, Switzerland.

  • Bashir KMI, Lee H, Mansoor S, Jahn A, Cho M (2021) The effect of chromium on photosynthesis and lipid accumulation in two chlorophyte microalgae. Energies 14:2260–2271

    CAS  Google Scholar 

  • Bashri G, Parihar P, Singh R, Singh S, Singh VP, Prasad SM (2016) Physiological and biochemical characterization of two Amaranthus species under Cr (VI) stress di_ering in Cr (VI) tolerance. Plant Physiol Biochem 108:12–23

    CAS  PubMed  Google Scholar 

  • Bassi M, Corradi MG, Ricci A (1990) Effects of chromium (VI) on two fresh water plants, Lemna minor and Pistia stratiotes. 2. Biochemical and physiological observations. Cytobios 62:101–109

    CAS  Google Scholar 

  • Baumann HA, Morrison L, Stengel DB (2009) Metal accumulation and toxicity measured by PAM-chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol Environ Safety 72:1063–1075

    CAS  PubMed  Google Scholar 

  • Bhalerao SA, Sharma AS (2015) Chromium: as an environmental pollutant. Int J Curr Microbiol Appl Sci 4:732–746

    CAS  Google Scholar 

  • Bishnoi N, Chugh LK, Sawhney SK (1993a) Effect of chromium on photosynthesis, respiration and nitrogen fixation in pea (Pisum sativum L.) seedlings. J Plant Physiol 42:25–30

    Google Scholar 

  • Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993b) Effect of chromium on seed germination, seedling growth and yield of peas”. Agric Ecosyst Environ 47:47–57

    CAS  Google Scholar 

  • Bonet A, Poschenrieder C, Barcelo J (1991) Chromium-III iron interaction in Fe deficient and Fe-sufficient bean plants. I. Growth and nutrient content. J Plant Nutr 14:403–414

    CAS  Google Scholar 

  • Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Díaz C, Vernon-Carter E (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867

    PubMed  Google Scholar 

  • Bukhari SAH, Zheng W, **e L, Zhang G, Shang S, Wu F (2016) Cr-induced changes in leaf protein profile, ultrastructure and photosynthetic traits in the two contrasting tobacco genotypes. Plant Growth Regul 79:147–156

    CAS  Google Scholar 

  • Cao F, Wang N, Zhang M, Dai H, Dawood M, Zhang G, Wu F (2013) Comparative study of alleviating of GSH, Se and Zn under combined contamination of cadmium and chromium in rice (Oryza sativa). Biometals 26:297–308

    PubMed  Google Scholar 

  • Cervantes C, Garcia JC, Devars S, Corona FG, Tavera HL, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with micro-organisms and plants. FEMS Microbiol Rev 25:335–347

    CAS  PubMed  Google Scholar 

  • Chandrasekhar C, Ray JG (2017) Copper accumulation, localization and antioxidant response in Eclipta alba L. in relation to quantitative variation of the metal in soil. Acta Physiol Plant 39:205

    Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    CAS  PubMed  Google Scholar 

  • Chatterjee J, Kumar P, Sharma PN, Tewar RK (2015) Chromium toxicity induces oxidative stress in turnip. Indian J Plant Physiol 20:220–226

    Google Scholar 

  • Chebeir M, Chen G, Liu H (2016) Emerging investigators series: frontier review: occurrence and speciation of chromium in drinking water distribution systems. Environ Sci Water Res Technol 2:906–914

    CAS  Google Scholar 

  • Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81:253–264

    CAS  Google Scholar 

  • Cho DW, Song H, Schwartz FW, Kim B, Jeon BH (2015) The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron. Chemosphere 125:41–49

    CAS  PubMed  ADS  Google Scholar 

  • Choppala G, Bolan N, Kunhikrishnan A, Skinner W, Seshadri B (2015) Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environ Sci pollut Res 22:8969–8978

    CAS  Google Scholar 

  • Choudhary KK, Agrawal SB (2016) Assessment of fatty acid profile and seed mineral nutrients of two soybean (Glycine max L.) cultivars under elevated ultraviolet-B: role of ROS, pigments and antioxidants. Photochem Photobiol 92:134–143

    CAS  PubMed  Google Scholar 

  • Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth under chromium and lead phytotoxicity. Wat Air Soil Poll 167:73–90

    CAS  ADS  Google Scholar 

  • Choudhury SP, Kanwar M, Bhardwaj R, Yu JQ, Lam-Son Phan T (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:e33210

    ADS  Google Scholar 

  • Christou A, Georgiadou EC, Zissimos AM, Christoforou IC, Christofi C, Neocleous D, Dalias P, Torrado SO, Argyraki A, Fotopoulos V (2020) Hexavalent chromium leads to differential hormetic or damaging effects in alfalfa (Medicago sativa L.) plants in a concentration-dependent manner by regulating nitro-oxidative and proline metabolism. Environ Pollut 267:115379

    CAS  PubMed  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosyn Res 7:31–40

    CAS  Google Scholar 

  • Danish S, Tahir F, Rasheed M, Ahmad N, Ali M (2019) Comparative effect of foliar application of Fe and banana peel biochar addition in spinach for alleviation of chromium (IV) toxicity. Open Agric 4:381–390

    Google Scholar 

  • Das N, Bhattarchya S, Matti MK (2016) Enhanced cadmium accumulation and tolerance in transgenics tobacco overexpression rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    CAS  PubMed  Google Scholar 

  • Datta J, Bandhyopadhyay A, Banerjee A, Mondal N (2011) Phytotoxic effect of chromium on the germination, seedling growth of some wheat (Triticum aestivum L.) cultivars under laboratory condition. J Agric Technol 7:395–402

    Google Scholar 

  • Daud MK, Mei L, Variath MT, Ali S, Li C, Rafiq MT, Zhu SJ (2014) Chromium (VI) uptake and tolerance potential in cotton cultivars: effect on their root physiology, ultramorphology, and oxidative metabolism. Biomed Res Int. https://doi.org/10.1155/2014/975946

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen Y, Ma LQ (2016) Sulfate and chromate increased each other’s uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere 147:36–43

    PubMed  ADS  Google Scholar 

  • Dhir B, Sharmila P, Pardha-Saradhi P (2008) Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich waste water. Braz J Plant Physiol 20:61–70

    CAS  Google Scholar 

  • Dhir B, Sharmila P, Saradhi PP, Nasim SA (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol Environ Safety 72:1790–1797

    CAS  PubMed  Google Scholar 

  • Ding H, Wang G, Lou L, Lv J (2016) Physiological responses and tolerance of kenaf (Hibiscus cannabinus L.) exposed to chromium. Ecotoxicol Environ Saf 133:509–518

    CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–693

    CAS  Google Scholar 

  • Dokmeci AH, Adiloglu S (2020) The phytoremediation of chromium from soil using Cirsium vulgare and the health effects. Biosci Biotechnol Res Asia 17:535–541

    Google Scholar 

  • Dong J, Wu F, Huang R, Zang G (2007) A chromium-tolerant plant growing in Cr contaminated land. Int J Phytoremediat 9:167–179

    CAS  Google Scholar 

  • Dua A, Sawhaney SK (1991) Effect of chromium on activities of hydrolytic enzymes in germinating pea seeds. Environ Exp Bot 31:133–139

    Google Scholar 

  • Dube B, Tewari K, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53:1147–1153

    CAS  PubMed  ADS  Google Scholar 

  • Eleftheriou EP, Adamakis IDS, Fatsiou M, Panteris E (2013) Hexavalent chromium disrupts mitosis by stabilizing microtubules in Lens culinaris root tip cells. Physiol Plant 147:169–180

    CAS  PubMed  Google Scholar 

  • Eleftheriou EP, Adamakis IDS, Panteris E, Fatsiou M (2015) Chromium-induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. Int J Mol Sci 16:15852–15871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eng BH, Guerinot ML, Eide D, SaierJr MH (1998) Sequence analyses and phylogenetic characterisation of the ZIP family of metal ion transport proteins. J Member Biol 166:1–17

    CAS  Google Scholar 

  • Erenoglu BE, Patra HK, Hicham Khodr H, Römheld V, Nicolaus von Wirén NV (2007) Uptake and apoplastic retention of EDTA- and phytosiderophore-chelated chromium (III) in maize. J Plant Nutr Soil Sci 170:788–795

    CAS  Google Scholar 

  • Ertani A, Mietto A, Borin M, Nardi S (2017) Chromium in agricultural soils and crops: a review. Water Air Soil Pollut 228:190

    ADS  Google Scholar 

  • Franco DV, Rodrigues MLK, Bavaresco J, Jardim W (1993) A screening method for detection of hexavalent chromium levels in soils. 34:1255–1259

    Google Scholar 

  • Farid M, Ali S, Akram NA, Rizwan M, Abbas F, Bukhari SAH, Saeed R (2017a) Phyto-management of Cr-contaminated soils by sunflower hybrids: physiological and biochemical response and metal extractability under Cr stress. Environ Sci Pollut Res 24:16845–16859

    CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Saeed R, Wu L (2017b) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90–102

    CAS  PubMed  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Saeed R, Nasir T, Abbasi GH, Rehmani MIA, Ata-Ul-Karim ST, Bukhari SAH (2018) Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol Environ Saf 151:255–265

    CAS  PubMed  Google Scholar 

  • Farouk S, Al-Amri SM (2019) Aeliorative roles of melatonin and/or zeolite on chromium-induced leaf senescence in marjoram plants by activating antioxidant defense, osmolyte accumulation, and ultrastructural modification. Ind Crops Prod 142:111823

    CAS  Google Scholar 

  • Fibbi D, Doumett S, Lepri L, Checchini L, Gonnelli C, Coppini E, del Bubba M (2012) Distribution and mass balance of hexavalent and trivalent chromium in a subsurface, horizontal flow (SF-h) constructed wetland operating as post-treatment of textile wastewater for water reuse. J Hazard Mater 199:209–216

    PubMed  Google Scholar 

  • Freeman JL, Freeman D, Garcia D, Kim A, Hopf DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewska E, Sklodowska M (2009) Nickel induced changes in nitrogen metabolism in wheat shoots. J Plant Pathol 166:1034–1044

    CAS  Google Scholar 

  • Gerendas J, Zhu Z, Bendixen R, Ratcliffe RG, Sattelmacher B (1997) Physiological and biochemical processes related to ammonium toxicity in higher plants. J Plant Nutr Soil Sci 160:239–251

    CAS  Google Scholar 

  • Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Ali S, Zhou W (2015) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164

    CAS  PubMed  ADS  Google Scholar 

  • Gill RA, Zhang N, Ali B, Farooq MA, Xu J, Gill MB, Mao B, Zhou W (2016) Role of exogenous salicylic acid in regulating physio-morphic and molecular changes under chromium toxicity in black- and yellow-seeded Brassica napus L. Environ Sci Pollut Res 23:20483–20496

    CAS  Google Scholar 

  • Gill RA, Ali B, Yang S, Tong C, Islam F, Gill MB, Mwamba TM, Ali S, Mao B, Liu S (2017) Reduced glutathione mediates phone-ultrastrcture, kinome and transportome in chromium-induced Brassica napus L. Front Plant Sci 8:2037

    PubMed  PubMed Central  Google Scholar 

  • Gomes MAC, Hauser-Davis RA, Suzuki MS, Vitória AP (2017) Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol Environ Saftey 140:55–64

    CAS  Google Scholar 

  • Gonzalez A, Mar Gil-Diaz M, Pinilla P, Carmen Lobo M (2017) Impact of Cr and Zn on growth, biochemical and physiological parameters, and metal accumulation by wheat and barley plants. Water Air Soil Pollut 228:419

    ADS  Google Scholar 

  • González-Pérez JA, González-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ Int 30:855–870

    PubMed  Google Scholar 

  • Grace PK, Jaikumar V, Kumar PS, Sundar Rajan P (2019) A review on cleaner strategies for chromium industrial wastewater: present research and future perspective. J Clean Prod 228:580–593

    Google Scholar 

  • Gupta S, Sharma S, Singh S (2014) Hexavalent chromium toxicity to cyanobacterium Spirulina plantensis. Int Res J Pharm 5:910–914

    Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    CAS  PubMed  Google Scholar 

  • Hafiz MF, Ma L (2021) Effect of chromium on seed germination, early seedling growth and chromium accumulation in tomato genotypes. Acta Physiol Plant 43:100

    CAS  Google Scholar 

  • Handa N, Kohli SK, Thukral AK, Arora S, Bhardwaj R (2017) Role of Se (VI) in counteracting oxidative damage in Brassica juncea L. under Cr (VI) stress. Acta Physiol Plant 39:51

    Google Scholar 

  • Haokip N, Gupta A (2020) A phytoremediation of chromium and manganese by Ipomea aquatic Forssk. From aquatim medium containing chromium manganese mixtures in microcosms and mesocosms. Water Environ J 35:884–891

    Google Scholar 

  • Henriques FS (2010) Changes in biomass and photosynthetic parameters of tomato plants exposed to trivalent and hexavalent chromium. Plant Biol 54:583–586

    CAS  Google Scholar 

  • Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatin, heavy metal-binding peptides. J Biosci Bioeng 100:593–599

    CAS  PubMed  Google Scholar 

  • Horcsik Z, Oláh V, Balogh A, Mészáros I, Simon L, Lakatos G (2006) Effect of chromium (VI) on growth, element and photosynthetic pigment composition of Chlorella pyrenoidosa. Acta Biol Szeged 50:19–23

    Google Scholar 

  • Horcsik ZT, Kovacs L, Laposi R, Meszaros I, Lakatos G, Garab G (2007) Effect of chromium on photosystem 2 in the unicellular green alga Chlorella pyrenoidosa. Photosynthetica 45:65–69

    Google Scholar 

  • Huang W, Jiao J, Ru M, Bai Z, Yuan H, Bao Z, Liang Z (2018) Localization and speciation of chromium in Coptis chinensis Franch. using synchrotron radiation X-ray technology and laser ablation ICP-MS. Sci Rep 8:8603

    PubMed  PubMed Central  ADS  Google Scholar 

  • Huda AKMN, Swaraz AM, Abu Reza M, Haque MA, Kabir AH (2016) Remediation of chromium toxicity through exogenous salicylic acid in rice (Oryza sativa L.). Water Air Soil Pollut 227:278

    ADS  Google Scholar 

  • Hussain A, Ali S, Rizwan M, Rehman MZ, Hameed A, Hafeez F, Alamri SA, Alyemeni MN, Wijaya L (2018) Role of zinc–lysine on growth and chromium uptake in rice plants under Cr stress. J Plant Growth Regul 37:1413–1422

    CAS  Google Scholar 

  • Islam MK, Khanam MS, Lee SY, Alam I, Huh MR (2014) The interaction of arsenic (As) and chromium (Cr) influences growth and antioxidant status in tossa jute (Corchorus olitorius). Plant Omics 7:499–509

    Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB), and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467

    CAS  PubMed  Google Scholar 

  • Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2016) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci 62:648–662

    CAS  Google Scholar 

  • Jia C, Zhang L, Liu L, Wang J, Li C, Wang Q (2013) Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f sp lycopersici. J Exp Bot 64:637–650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere 207:255–266

    CAS  PubMed  ADS  Google Scholar 

  • Joshi UN, Rathore SS, Arora SK (2003) Effect of Cr (VI) on carbon and nitrogen metabolism in cowpea (Vigna unguiculata L.). In: Proceedings of the 2nd International Conference on Contaminants in the Soil Environment in the Australasia-Pacific Region, pp. 292–293, Hotel Roddison, New Delhi, India, 1999.

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int j Mol Sci 13:3145–3175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwar MK, Poonam SP, Bhardwaj R (2015) Involvement of Asada-Halliwell pathway during phytoremediation of chromium (VI) in Brassica juncea L. Plants Int J Phytoremediat 17:1237–1243

    CAS  Google Scholar 

  • Khadra A, Pinelli E, Ezzariai A, Mohamed O, Merlina G (2019) Assessment of the genotoxicity of antibiotics and chromium in primary sludge and compost using Vicia fabamicro nucleus test. Ecotoxicol Environ Safety 185:109693

    CAS  PubMed  Google Scholar 

  • Khan MN, Alamri S, Al-Amri AA, Alsubaie QD, Al-Munqedi B, Ali HM (2020) Effect of nitric oxide on seed germination and seedling development of tomato under chromium toxicity. J Plant Growth Regul 2:1–13

    Google Scholar 

  • Khanna P, Kaur K, Gupta AK (2016) Salicylic acid induces deferential antioxidant response in spring maize under high temperature stress. Indian J Exp Biol 54:386–393

    PubMed  Google Scholar 

  • Kharbech O, Houmani H, Chaoui A, Corpas FJ (2017) Alleviation of Cr (VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H2S donors through differential organ-dependent regulation of ROS and NADPH-recycling metabolisms. J Plant Physiol 219:71–80

    CAS  PubMed  Google Scholar 

  • Kim LN, Hoang AN, Richter O, Minh TP, Van Phuoc N (2017) Ecophysiological responses of young mangrove species Rhizophora apiculata (Blume) to different chromium contaminated environments. Sci Total Environ 574:369–380

    Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46

    CAS  Google Scholar 

  • Kleinhofs A, Warner RL (1990) Advances in nitrate assimilation. Biochem Plants 16:89–120

    CAS  Google Scholar 

  • Kovacik J, Babula P, Klejdus B, Hedbavny J (2013) Chromium uptake and consequences for metabolism and oxidative stress in chamomile plants. J Agric Food Chem 61:7864–7873

    CAS  PubMed  Google Scholar 

  • Kullu B, Patra DK, Acharya S, Pradhan C, Patra HK (2020) AM fungi mediated bioaccumulation of hexavalent chromium in Brachiaria mutica-a mycorrhizal phytoremediation approach. Chemosphere 258:127337

    CAS  PubMed  ADS  Google Scholar 

  • Kumar S, Joshi UN (2008) Nitrogen metabolism as affected by hexavalent chromium in sorghum (Sorghum bicolor L.). Environ Experimn Bot 64:135–144

    CAS  Google Scholar 

  • Kumar V, Suryakant P, Kumar S, Kumar N (2016) Effect of chromium toxicity on plants: a review. Agriways 4:107–120

    CAS  Google Scholar 

  • Lahouti M, Jamshidi S, Ejtehadi H, Rowshani M, Mahmoodzad H (2008) X-Ray microanalysis and ultrastructural localization of chromium in Raphanus sativus L. Int J Bot 4:340–343

    Google Scholar 

  • Liu D, Zou J, Wang M, Jiang W (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Bioresour Technol 99:2628–2636

    CAS  PubMed  Google Scholar 

  • Liu J, Duan CQ, Zhang XH, Zhu YN, Hu C (2009) Subcellular distribution of chromium in accumulating plant Leersiahexandra Swartz. Plant Soil 322:187–195

    CAS  Google Scholar 

  • López-Bucio J, Hernández-Madrigal F, Cervantes C, Ortiz-Castro R, Carreón-Abud Y (2014) Phosphate relieves chromium toxicity in Arabidopsis thaliana plants by interfering with chromate uptake. Bio Metals 27:363–370

    Google Scholar 

  • Lopez-Luna J, Gonzalez-Chavez M, Esparza-Garcia F, Rodriguez-Vazquez R (2009) Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium, using wheat, oat and sorghum plants. J Hazard Mater 163:829–834

    CAS  PubMed  Google Scholar 

  • Ma J, Lv C, Xu M, Chen G, Lv C, Gao Z (2016) Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environ Sci Pollut Res 23:1768–1778

    CAS  Google Scholar 

  • Maiti S, Ghosh N, Mandal C, Das K, Dey N, Adak MK (2012) Responses of the maize plant to chromium stress with reference to antioxidation activity. Braz J Plant Physiol 24:203–212

    CAS  Google Scholar 

  • Maqbool A, Ali S, Rizwan M, Ishaque W, Rasool N (2018) Management of tannery wastewater for improving growth attributes and reducing chromium uptake in spinach through citric acid application. Environ Sci Pollut Res 25:10848–10856

    CAS  Google Scholar 

  • Martinonia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Schulz B (2002) Multifunctionality of plant ABC transporters-more than just detoxifers. Planta 214:345–355

    Google Scholar 

  • Mathur S, Kalaji HK, Jajoo A (2016) Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica 54:185–192

    CAS  Google Scholar 

  • Medda S, Mondal NK (2017) Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann Agrar Sci 15:396–401

    ADS  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    PubMed  PubMed Central  Google Scholar 

  • Mohanty M, Patra HK (2011) Attenuation of chromium toxicity by bioremediation technology. Rev Environ Contam Toxicol 210:1–34

    CAS  PubMed  Google Scholar 

  • Mohanty M, Pradhan C, Patra HK (2015) Chromium translocation, bioconcentration and its phytotoxic impacts in in vivo grown seedlings of Sesbania sesban L. seedlings. Acta Biol Hung 66:80–92

    CAS  PubMed  Google Scholar 

  • Moral R, Pedreno JN, Gomez I, Mataix J (1995) Effects of chromium on the nutrient elementcontent and morphology of tomato. J Plant Nutr 18:815–822

    CAS  Google Scholar 

  • Nafees M, Ali S, Naveed M, Rizwan M (2018) Efficiency of biogas slurry and Burkholderia phytofirmans PsJN to improve growth, physiology, and antioxidant activity of Brassica napus L. in chromium-contaminated soil. Environ Sci Pollut Res 25:6387–6397

    CAS  Google Scholar 

  • Nath K, Saini S, Sharma YK (2005) Chromium in tannery industry effluent and its effect on plant metabolism and growth. J Environ Biol 26:197–204

    CAS  PubMed  Google Scholar 

  • Ngoc-Nam T, Huang TL, Chi WC, Fu SF, Chen CC, Huang HJ (2014) Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol Plant 150:205–224

    Google Scholar 

  • Nichols PB, Couch JD, Al-Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68:313–319

    CAS  Google Scholar 

  • O’Brien JA, Benkova E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451

    PubMed  PubMed Central  Google Scholar 

  • Paiva LB (2009) Ecophysiological responses of water hyacinth exposed to Cr3+and Cr6+. Environ Exp Bot 65:403–409

    CAS  Google Scholar 

  • Panda SK, Patra HK (2000) Does Cr (III) produce oxidative damage in excised wheat leaves? J Plant Biol 27:105–110

    Google Scholar 

  • Panda A, Patra DK, Acarya S, Pradhan C, Patra HK (2020) Assessment of the phytoremediation potential of Zinnia elegans L. plant species for hexavalent chromium through pot experiment. Environ Technol Innov 20:101042

    CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2009) Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236:85–95

    CAS  PubMed  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2013) Hexavalent chromium induced inhibition of photosynthetic electron transport in isolated spinach chloroplasts. 382: https://doi.org/10.5772/56742. ISBN: 978-953-51-1161-0

    Google Scholar 

  • Patnaik AR, Achary VMM, Panda BB (2013) Chromium (VI)-induced hormesis and genotoxicity are mediatedthrough oxidative stress in root cells of Allium cepa L. Plant Growth Regul 71:157–170

    CAS  Google Scholar 

  • Patra DK, Pradhan C, Patra HK (2018a) An in situ study of growth of Lemongrass: Cymbopogon flexuosus (Nees ex Steud.) W. Watson on varying concentration of Chromium (Cr+6) on soil and its bioaccumulation: perspectives on phytoremediation potential and phytostabilisation of chromium toxicity. Chemosphere 193:793–799

    CAS  PubMed  ADS  Google Scholar 

  • Patra DK, Pradhan C, Patra HK (2018b) Chelate based phytoremediation study for attenuation of chromium toxicity stress using lemongrass: Cymbopogon flexuosus (Nees ex Steud.) W Watson. Int J Phytoremediat 20:1324–1329

    CAS  Google Scholar 

  • Patra DK, Pradhan C, Patra HK (2018c) Chromium stress impact on lemongrass grown in over burden soil of sukinds chromite ore mine (Odisha), India. Ann Plant Sci 7:2394–2397

    CAS  Google Scholar 

  • Patra DK, Pradhan C, Patra HK (2019) Chromium bioaccumulation, oxidative stress metabolism and oil content in lemon grass Cymbopogon flexuosus (Nees ex Steud.) W. Watson grown in chromium rich over burden soil of Sukinda chromite mine, India. Chemosphere 218:1082–1088

    CAS  PubMed  ADS  Google Scholar 

  • Patra DK, Pradhan C, Kumar J, Patra HK (2020a) Assessment of chromium phytotoxicity, phytoremediation and tolerance potential of Sesbania sesban and Brachiaria mutica grown on chromite mine overburden dumps and garden soil. Chemosphere 252:126553

    CAS  PubMed  ADS  Google Scholar 

  • Patra DK, Grahacharya A, Pradhan C, Patra HK (2020b) Phytoremediation potential of coffee pod (Cassia tora): an in situ approach for attenuation of chromium from overburden soil of Sukinda Chromite Mine, India. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13510

    Article  Google Scholar 

  • Patra DK, Pradhan C, Patra HK (2020c) Effect of chelators on morpho- physiological parameters of paragrass (Bracharia mutica) grown in over burden soil of Sukinda chromite mine. Ann Plant Soil Res 22:160–165

    Google Scholar 

  • Patra DK, Pradhan C, Patra HK (2020d) Effect of chelators on morpho-physiological parameters of paragrass grown in over burden soil of Sukinda chromite mine. Ann Plant Soil Res 22:160–165

    Google Scholar 

  • Patra DK, Acharya S, Pradhan C, Patra HK (2021) Poaceae plants as potential phytoremediators of heavy metals and eco-restoration in contaminated mining sites. Environ Technol Innov 21:101293

    CAS  Google Scholar 

  • Pawlisz AV, Kent RA, Schneider UA, Jefferson C (1997) Canadian water quality guidelines for chromium. Environ Toxicol Wter Qual 12:123–179

    CAS  ADS  Google Scholar 

  • Poschenrieder C, Vazquez MD, Bonet A, Barcelo J (1991) Chromium III–iron interaction in iron sufficient and iron deficient bean plants. II. Ultrastructural aspect. s J Plant Nut 14:415–428

    CAS  Google Scholar 

  • Prado C, Rodrıguez-Montelongo L, Gonzalez JA, Pagano EA, Hilal M, Prado FE (2010) Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. J Hazard Mater 177:546–553

    CAS  PubMed  Google Scholar 

  • Prado C, Prado FE, Pagano E, Rosa M (2015) Differential effects of Cr (VI) on the ultrastructure of chloroplast and plasma membrane of salvinia minima growing in summer and winter. Relationships with lipid peroxidation, electrolyte leakage, photosynthetic pigments, and carbohydrates. Water Air Soil Pollut 226:8

    ADS  Google Scholar 

  • Qian H, Sun Z, Sun L, Jiang Y, Wei Y, **e J (2013) Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris. Chemosphere 93:885–891

    CAS  PubMed  ADS  Google Scholar 

  • Qing X, Zhao X, Hu C, Wang P, Zhang Y, Zhang X, Wang P, Shi H, Jia F, Qu C (2015) Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L. ssp. Pekinensis) leaves. Ecotoxicol Environ Saf 114:179–189

    CAS  PubMed  ADS  Google Scholar 

  • Radha J, Srivastava S, Madan V (2000) Influence of chromium on growth and cell division of sugarcane. Indian J Plant Physiol 5:228–231

    Google Scholar 

  • Rai V, Mehrotra S (2008) Chromium-induced changes in ultramorphologyand secondary metabolites of Phyllanthus amarus Schum & Thonn.—a hepatoprotective plant. Environ Monit Assess 147:307–315

    CAS  PubMed  Google Scholar 

  • Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159–1169

    CAS  Google Scholar 

  • Rauser WE, Samarakoon AB (1980) Vein loading in seedlings of phaseolus vulgaris exposed to excess cobalt, Nickel, and Zinc. 65:578–583

    CAS  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: Its role in plant growth and development. J Exp Bot 62:3321–3338

    CAS  PubMed  Google Scholar 

  • Robinson SA, Stewart GR, Phillips R (1992) Regulation of glutamate dehydrogenase activity in relation to carbon limitation and protein catabolism in carrot cell suspension cultures. Plant Physiol 98:1190–1195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rocchetta I, Kupper H (2009) Chromium- and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy. New Phytol 182:405–420

    CAS  PubMed  Google Scholar 

  • Rocha AC, Canal EC, Campostrini E, Reis FO, Cuzzuol GRF (2009) Influence of chromium in Laguncularia racemosa (L). Gaertn f. physiology. Braz J Plant Physiol 21:87–94

    Google Scholar 

  • Rodriguez E, Santos C, Azevedo R, Moutinho-Pereira J, Correia C, Dias MC (2012) Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol Biochem 53:94–100

    CAS  PubMed  Google Scholar 

  • Rodríguez-Zavala JS, García-García JD, Ortiz-Cruz MA, Moreno-Sánchez R (2007) Molecularmechanisms of resistance to heavy metals in the protist Euglena gracilis. J Environ Sci Health Part a: Toxic/hazard Sub Environ Eng 42:1365–1378

    Google Scholar 

  • Saleem MH, Afzal J, Rizwan M, Shah Z, Depar N, Usman K (2022) Chromium toxicity in plants: consequences on growth, chromosomal behaviour and mineral nutrient status. Turk J Agr. https://doi.org/10.55730/1300-011X.3010

  • Sarwar M, Imran M, Shaheen MR, Hussain S (2010) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    ADS  Google Scholar 

  • SayantanShardendu, D (2013) Amendment in phosphorus levels moderate the chromium toxicity in Raphanus sativus L. as assayed by antioxidant enzymes activities. Ecotoxicol Environ Saf 95:161–170

    Google Scholar 

  • Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A (2006) Uptake and toxicity of Cr (III) in celery seedlings. Chemosphere 64:1695–1703

    CAS  PubMed  ADS  Google Scholar 

  • Scoccianti V, Bucchini AE, Iacobucci M, Ruiz KB, Biondi S (2016) Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd. Ecotoxicol Environ Saf 133:25–35

    CAS  PubMed  Google Scholar 

  • Sen AK, Mondal NG, Mandal S (1987) Studies of uptake and toxic effects of Cr (VI) on Pistia stratiotes. Water Sci Tech 19:119–127

    CAS  Google Scholar 

  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

    CAS  PubMed  ADS  Google Scholar 

  • Shanker AK (2004). Plasma membrane H+ ATPase and Fe (III) reductase: keyenzymes when engineering tolerance to chromium speciation stress in plants. Paper in BIOHORIZON 2004 6th National Symposium on Biochemical engineering and biotechnogy Held at Indian Institute of Technology, New Delhi 12th–13th March 2004

  • Shanker AK, Djanaguirman M, Venkatewarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1:375–383

    CAS  PubMed  Google Scholar 

  • Sharma DC, Chatterjee C, Sharma CP (1995) Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. HD 2204) metabolism. Plant Sci 111:145–151

    CAS  Google Scholar 

  • Sharma AD, Brar MS, Malhi SS (2005) Critical toxic ranges of chromium in spinach plants and in soil. J Plant Nutr 28:1555–1568

    CAS  Google Scholar 

  • Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Jasrotia S, Zheng B, Yuan HD (2020) Chromium bioaccumulation and its impacts on plants: an overview. Plants 100:1–17

    Google Scholar 

  • Shirong Z, Shuyi L, ** L, ** W (2013) Silicon mediated the detoxification of Cr on pakchoi (Brassica chinensis L.) in Cr-contaminated soil. J Food Agric Environ 11:814–819

    Google Scholar 

  • Singh G, Singh M (1913) Correlation and path analysis in maize under hills of Sikkim. Crop Improv 20:222–225

    Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    CAS  Google Scholar 

  • Singh S, Srivastava PK, Kumar D, Tripathi DK, Chauhan DK, Prasad SM (2015) Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatal Agric Biotechnol 4:286–295

    Google Scholar 

  • Singh VP, Kumar J, Singh M, Singh S, Prasad SM, Dwivedi R, Singh MPVVB (2016) Role of salicylic acid-seed priming in the regulation of chromium (VI) and UV-B toxicity in maize seedlings. Plant Growth Regul 78:79–91

    CAS  Google Scholar 

  • Singh M, Kushwaha BK, Singh S, Kumar V, Singh VP, Prasad SM (2017) Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: role of sulphur assimilation and sulphur-containing antioxidants. Plant Physiol Biochem 112:183–192

    CAS  PubMed  Google Scholar 

  • Singh D, Sharma NL, Singh CK, Yerramilli V, Narayan R, Sarkar SK, Singh I (2021) Chromium (VI)-induced alterations in physio-chemical parameters, yield, and yield characteristics in two cultivars of mung bean (Vigna radiata L.). Fron Plant Sci 12:1–18

    Google Scholar 

  • Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L: role ofantioxidants and antioxidant enzymes. Chemosphere 58:595–604

    CAS  PubMed  ADS  Google Scholar 

  • Sinha V, Pakshirajan K, Chaturvedi R (2014) Chromium (VI) accumulation and tolerance by Tradescantia pallida: biochemical and antioxidant study. Appl Biochem Biotechnol 173:2297–2306

    CAS  PubMed  Google Scholar 

  • Sinha V, Pakshirajan K, Chaturvedi R (2018) Chromium tolerance, bioaccumulation and localization in plants: an overview. J Environ Manage 206:715–730

    CAS  PubMed  Google Scholar 

  • Skirycz A, Inze D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203

    CAS  PubMed  Google Scholar 

  • Song WY, Park J, Eisenach C, Maeshima M, Lee Y, Martinoia E (2014) ABC transporter and heavy metals. Plant ABC transporters. Springer International Publishing, New York, pp 1–17

    Google Scholar 

  • Soni SK, Singh R, Awasthi A, Singh M, Kalra A (2013) In vitro Cr (VI) reduction by cell-free extracts of chro-mate-reducing bacteria isolated from tannery effluent irrigated soil. Environ Sci Pollut 20:1661–1674

    CAS  Google Scholar 

  • Srivastava D, Tiwari M, Dutta P, Singh P, Puja S, Chawda K, Kumari MK, Chakrabarty D (2021) Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability 13:4629

    CAS  Google Scholar 

  • Stambulska UY, Bayliak MM, Lushchak VI (2018) Chromium (VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. BioMed Res Int 3:1–13. https://doi.org/10.1155/2018/8031213

    Article  CAS  Google Scholar 

  • Subrahmanyam D (2008) Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46:339–345

    CAS  Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy (i) nutrient status of paddy under chromium stress (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597–607

    CAS  PubMed  Google Scholar 

  • Tian B, Zhang Y, Zhang L, Ma X, ** Z, Liu Z, Liu D, Pei Y (2016) Effects of cadmium or chromium ongrowth and NADPH oxidase and antioxidant enzyme system of foxtail millet seedlings. J Agro-Environ Sci 35:240–246

    Google Scholar 

  • Tirry N, Kouchou A, Omari BE, Mohamed Ferioun M, Ghachtouli NE (2021) Improved chromium tolerance of Medicagosativa by plant growth-promoting rhizobacteria (PGPR). J Genetic Eng Biotech 19:149

    Google Scholar 

  • Tiwari KK, Dwivedi S, Singh NK, Rai UN, Tripathi RD (2009) Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. J Environ Biol 30:389–394

    CAS  PubMed  Google Scholar 

  • Tiwari K, Singh N, Rai U (2013) Chromium phytotoxicity in radish (Raphanus sativus): effects on metabolism and nutrient uptake. Bull Environ Cont Toxicol 91:339–344

    CAS  Google Scholar 

  • Todorenko D, Timofeev N, Kovalenko I, Kukarskikh G, Matorin D (2020) Chromium effects on photosynthetic electron transport in pea (Pisum sativum L.). Planta 251:11

    CAS  Google Scholar 

  • Tripathi RD, Smith S (1996) Effect of chromium (VI) on growth, pigment content photosynthesis, nitrate reductase activity, metabolic nitrate pool and protein content in duckweed (Spirodela polyrrhiza). In: Yunus M (ed) International conference on plants and environmental pollution, book of abstracts. p 159, India

    Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    CAS  PubMed  Google Scholar 

  • Tripathi A, Tripathi DK, Chauhan DK, Kumar N (2016) Chromium (VI)-induced phytotoxicity in river catchment agriculture: evidence from physiological, biochemical and anatomical alterations in Cucumis sativus (L.) used as model species. Chem Ecol 32:12–33

    CAS  Google Scholar 

  • UdDin I, Bano A, Masood S (2015) Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. Ecotoxicol Environ Saf 113:271–278

    CAS  PubMed  Google Scholar 

  • Ulhassan Z, Gill RA, Huang H, Ali S, Mwamba TM (2019) Selenium mitigates the chromium toxicity in Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system. Plant Physiol Biochem 145:142–152

    CAS  PubMed  Google Scholar 

  • Ullah R, Haldi F, Ahmad S, Jan AU, Rongliang Q (2019) Phytoremediation of lead and chromium contaminated soil improves with the endogenous phenolics and proline production in Parthenium, cannabis, euphorbia, and rumex species. Water Air Soil Pollut 230:40

    ADS  Google Scholar 

  • Upadhyay R, Panda SK (2010) Influence of chromium salts on increased lipid peroxidation and differential pattern in antioxidant metabolism in Pistia stratiotes L. Braz Arch Biol Technol 53:1137–1144

    CAS  Google Scholar 

  • USEPA (United State Environmental Protection Agency) (1999) Integrated risk management system (IRIS) on chromium (VI). National Center for Environmental Assesment, Office of Research and Development, Washington, DC

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    CAS  PubMed  ADS  Google Scholar 

  • Vazques MD, Poschenrieder C, Barcelo J (1987) Chromium (VI) induced structural changes in bush bean plants. Ann Bot 59:427–438

    Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation ofheavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575

    CAS  PubMed  ADS  Google Scholar 

  • Vernay P, Gauthier-Moussard C, Jean L, Bordas F, Faure O, Ledoigt G, Hitmi A (2008) Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere 72:763–771

    CAS  PubMed  ADS  Google Scholar 

  • Volland S, Lütz C, Michalkec B, Lütz-Meindla U (2012) Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aqua Toxicol 109:59–69

    CAS  Google Scholar 

  • Wakeel A, Ali I, Wu M, Kkan AR, Jan M, Ali A, Liu Y, Ge S, Wu J, Gan Y (2019) Ethylene mediates dichromate-induced oxidative stress and regulation of the enzymatic antioxidant system-related transcriptome in Arabidopsis thaliana. Environ Exp Bot 161:166–179

    CAS  Google Scholar 

  • Wakeel A, Xu M, Gan Y (2020) Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants. Int J Mole Sci 21:728

    CAS  Google Scholar 

  • Wilson G, Al-Hamdani SH (1997) Effects of chromium (VI) and humic substances on selected physiological responses of Azolla caroliniana. Am Fern J 87:17–27

    Google Scholar 

  • Wu Z, McGrouther K, Chen N, Wu W, Wang H (2013) Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress. J Agric Food Chem 61:4715–4722

    CAS  PubMed  Google Scholar 

  • Yewalkar SN, Dhumal KN, Sainis JK (2013) Effect of chromate on photosynthesis in Cr (VI)-resistant Chlorella. Photosynthetica 51:565–573

    CAS  Google Scholar 

  • Yildiz M, Terzi H, Cenkci S, Yildiz B (2012) Chromium (VI)-induced alterations in 2-D protein profiles and antioxidant defence systems of barley cultivars. Hacet J Biol Chem 40:257–265

    Google Scholar 

  • Yildiz M, Terzi H, Bingul N (2013) Protective role of hydrogen peroxide pretreatment on defense systems and BnMP1 gene expression in Cr (VI)-stressed canola seedlings. Ecotoxicol 22:1303–1312

    CAS  Google Scholar 

  • Yilmaz SH, Kaplan M, Temizgul R, Yilmaz S (2017) Antioxidant enzyme response of sorghum plant upon exposure to aluminum, chromium and lead heavy metals. Turk J Biochem 42:503–512

    CAS  Google Scholar 

  • Yu XZ, Lu CJ, Li YH (2018) Role of cytochrome c in modulating chromium-induced oxidative stress in Oryza sativa. Environ Sci Pollut Res 25:27639–27649

    CAS  Google Scholar 

  • Yu XZ, Lin YJ, Zhang Q (2019) Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. Chemosphere 220:300–313

    CAS  PubMed  ADS  Google Scholar 

  • Zaheer IE, Ali S, Saleem MH, Arslan AM, Ali Q (2019) Zinc-lysine supplementation mitigates oxidative stress in rapeseed (Brassica napus L.) by preventing phytotoxicity of chromium, when irrigated with tannery wastewater. Plants 9:1145

    Google Scholar 

  • Zaheer IE, Ali S, Saleem MH, Imran M, Alnusairi GSH (2020) Role of iron–lysine onmorpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater. Plant Physiol Biochem 155:70–84

    CAS  PubMed  Google Scholar 

  • Zeng FR, Zhao FS, Qiu BY, Ouyang YN, Wu FB (2011) Alleviation of chromium toxicity by silicon addition in rice plants. Agr Sci China 10:1188–1196

    CAS  Google Scholar 

  • Zeng F, Wu X, Qiu B, Wu F, Jiang L, Zhang G (2014) Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Planta 240:291–308

    CAS  PubMed  Google Scholar 

  • Zhang H, Hu L, Li PY, Hu KD, Jiang CX (2010a) Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plant 54:743–747

    CAS  Google Scholar 

  • Zhang X, Zhang S, Xu X, Li T, Gong G, Jia Y, Li Y, Deng L (2010b) Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L. J Hazard Mat 18:303–308

    Google Scholar 

  • Zhang Y, Zhang Y, Zhong C, **ao F (2016a) Cr (VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes. Sci Rep 6:34578

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Zhang H, Yang W, Wang Q, Sun J (2016b) The sub-cellular chromium (Cr+6) distribution and tolerance mechanism to chromium stress in different tolerant Brassica chinensis L. Cultivars Acta Bot Boreali-OccidentSin 36:954–963

    CAS  Google Scholar 

  • Zhu X, Hou G, Ru G, Zhang L, Wu X, Liu G (2017) Accumulation and antioxidant properties of chromium stress in Pennisetum alopecuroides. J Henan Agric Univ 51:330–334

    Google Scholar 

  • Zlobin IE, Kholodova VP, Rakhmankulova ZF, Kuznetsov VV (2015) Brassica napus responses to short-term excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene NRAMP4 involved in photosystem II stabilization. Photosyn Res 125:141–150

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar Patra.

Additional information

Communicated by A. Piotrowska-Niczyporuk.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, H.K., Patra, D.K. & Acharya, S. Chromium-induced phytotoxicity and its impact on plant metabolism. Acta Physiol Plant 46, 20 (2024). https://doi.org/10.1007/s11738-023-03646-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-023-03646-0

Keywords

Navigation