Log in

Recent research progress of master mold manufacturing by nanoimprint technique for the novel microoptics devices

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 2022

This article has been updated

Abstract

The consumer demand for emerging technologies such as augmented reality (AR), autopilot, and three-dimensional (3D) internet has rapidly promoted the application of novel optical display devices in innovative industries. However, the micro/nanomanufacturing of high-resolution optical display devices is the primary issue restricting their development. The manufacturing technology of micro/nanostructures, methods of display mechanisms, display materials, and mass production of display devices are major technical obstacles. To comprehensively understand the latest state-of-the-art and trigger new technological breakthroughs, this study reviews the recent research progress of master molds produced using nanoimprint technology for new optical devices, particularly AR glasses, new-generation light-emitting diode car lighting, and naked-eye 3D display mechanisms, and their manufacturing techniques of master molds. The focus is on the relationships among the manufacturing process, microstructure, and display of a new optical device. Nanoimprint master molds are reviewed for the manufacturing and application of new optical devices, and the challenges and prospects of the new optical device diffraction grating nanoimprint technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Chou S Y, Krauss P R, Kong L. Nanolithographically defined magnetic structures and quantum magnetic disk. Journal of Applied Physics, 1996, 79(8): 6101–6106

    Article  CAS  Google Scholar 

  2. Carballo J A, Chan W T J, Gargini P A, et al. ITRS 2.0: toward a re-framing of the semiconductor technology roadmap. In: 2014 IEEE 32nd International Conference on Computer Design (ICCD), 2014: 139–146

  3. Francone A, Kehoe T, Obieta I, et al. Integrated 3D hydrogel waveguide out-coupler by step-and-repeat thermal nanoimprint lithography: a promising sensor device for water and pH. Sensors, 2018, 18(10): 3240

    Article  Google Scholar 

  4. Gupta V, Sarkar S, Aftenieva O, et al. Nanoimprint lithography facilitated plasmonic-photonic coupling for enhanced photoconductivity and photocatalysis. Advanced Functional Materials, 2021, 31(36): 2105054

    Article  CAS  Google Scholar 

  5. Lai X, Ren Q, Vogelbacher F, et al. Bioinspired quasi-3D multiplexed anti-counterfeit imaging via self-assembled and nanoimprinted photonic architectures. Advanced Materials, 2022, 34(3): 2107243

    Article  CAS  Google Scholar 

  6. Flatabø R, Agarwal A, Hobbs R, et al. Exploring proximity effects and large depth of field in helium ion beam lithography: large-area dense patterns and tilted surface exposure. Nanotechnology, 2018, 29(27): 275301

    Article  Google Scholar 

  7. Lin Y, Yu B, Zou Y, et al. Stitch aware detailed placement for multiple E-beam lithography. Integration, 2017, 58: 47–54

    Article  Google Scholar 

  8. Guo L J. Nanoimprint lithography: methods and material requirements. Advanced Materials, 2007, 19(4): 495–513

    Article  CAS  Google Scholar 

  9. Cutolo F, Parchi P D, Ferrari V. Video see through AR head-mounted display for medical procedures. In: 2014 IEEE the International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2014: 393–396

  10. Erdenebat M U, Lim Y T, Kwon K C, et al. Chapter 4: Waveguide-type head-mounted display system for AR application. In: Mohamudally N, ed. State of the Art Virtual Reality and Augmented Reality Knowhow, 2018: 41–58

  11. Kress B C. Optical waveguide combiners for AR headsets: features and limitations. In: Proceedings of SPIE 11062: Digital Optical Technologies 2019, 2019: 110620J

  12. Koulieris G A, Akşit K, Stengel M, et al. Near-eye display and tracking technologies for virtual and augmented reality. Computer Graphics Forum, 2019, 38(2): 493–519

    Article  Google Scholar 

  13. Verhulst I, Woods A, Whittaker L, et al. Do VR and AR versions of an immersive cultural experience engender different user experiences?. Computers in Human Behavior, 2021, 125: 106951

    Article  Google Scholar 

  14. Zhan T, Yin K, **ong J, et al. Augmented reality and virtual reality displays: perspectives and challenges. iScience, 2020, 23(8): 101397

    Article  Google Scholar 

  15. Kress B C, Chatterjee I. Waveguide combiners for mixed reality headsets: a nanophotonics design perspective. Nanophotonics, 2021, 10(1): 41–74

    Article  Google Scholar 

  16. Kang C, Lee H. Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications. Journal of Information Display, 2022, 23(1): 19–32

    Article  Google Scholar 

  17. Cui W, Chang C, Liang G. Development of an ultra-compact optical combiner for augmented reality using geometric phase lenses. Optics Letters, 2020, 45(10): 2808–2811

    Article  Google Scholar 

  18. Kawanishi H, Onuma H, Maegawa M, et al. High-resolution and high-brightness full-colour “Silicon Display” for augmented and mixed reality. Journal of the Society for Information Display, 2021, 29(1): 57–67

    Article  CAS  Google Scholar 

  19. Liu Z, Pan C, Pang Y, et al. A full-color near-eye augmented reality display using a tilted waveguide and diffraction gratings. Optics Communications, 2019, 431: 45–50

    Article  CAS  Google Scholar 

  20. Yan Z, Du C, Zhang L. Surface micro-reflector array for augmented reality display. IEEE Photonics Journal, 2020, 12(2): 1–9

    Article  Google Scholar 

  21. Liu Z, Pang Y, Pan C, et al. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics. Optics Express, 2017, 25(24): 30720–30731

    Article  Google Scholar 

  22. Förthner M, Girschikofsky M, Rumler M, et al. One-step nanoimprinted Bragg grating sensor based on hybrid polymers. Sensors and Actuators A: Physical, 2018, 283: 298–304

    Article  Google Scholar 

  23. Austin M D, Ge H, Wu W, et al. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters, 2004, 84(26): 5299–5301

    Article  CAS  Google Scholar 

  24. Yin K, Lin H Y, Wu S T. Chirped polarization volume grating for wide FOV and high-efficiency waveguide-based AR displays. Journal of the Society for Information Display, 2020, 28(4): 368–374

    Article  CAS  Google Scholar 

  25. Zhang W, Wang Z, Xu J. Research on a surface-relief optical waveguide augmented reality display device. Applied Optics, 2018, 57(14): 3720–3729

    Article  Google Scholar 

  26. Shishova M, Zherdev A, Odinokov S, et al. Selective couplers based on multiplexed volume holographic gratings for waveguide displays. Photonics, 2021, 8(7): 232

    Article  Google Scholar 

  27. Lu J, Liu Q, Huang S. Research on slanted trapezoidal surface relief grating. In: Proceedings of SPIE 11188: Holography, Diffractive Optics, and Applications IX, 2019: 1118828

  28. Shishova M V, Odinokov S B, Zherdev A Y, et al. Recording of multiplexed volume gratings via a phase mask for augmented reality waveguides. Applied Optics, 2021, 60(4): A140–A144

    Article  CAS  Google Scholar 

  29. Yu C, Peng Y, Zhao Q, et al. Highly efficient waveguide display with space-variant volume holographic gratings. Applied Optics, 2017, 56(34): 9390–9397

    Article  Google Scholar 

  30. **ao J, Liu J, Lv Z, et al. On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle. Optics Express, 2019, 27(2): 1683–1692

    Article  CAS  Google Scholar 

  31. Thanner C, Dudus A, Treiblmayr D, et al. Nanoimprint lithography for augmented reality waveguide manufacturing. In: Kress B C, Peroz C, eds. Proceedings of SPIE 11310: Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR), 2020: 1131010

  32. Barcelo S, Li Z. Nanoimprint lithography for nanodevice fabrication. Nano Convergence, 2016, 3: 21

    Article  Google Scholar 

  33. Traub M C, Longsine W, Truskett V N. Advances in nanoimprint lithography. Annual Review of Chemical and Biomolecular Engineering, 2016, 7: 583–604

    Article  Google Scholar 

  34. Cates N, Einck V J, Micklow L, et al. Roll-to-roll nanoimprint lithography using a seamless cylindrical mold nanopatterned with a high-speed mastering process. Nanotechnology, 2021, 32(15): 155301

    Article  CAS  Google Scholar 

  35. Carbaugh D J, Pandya S G, Wright J T, et al. Combination photo and electron beam lithography with polymethyl methacrylate (PMMA) resist. Nanotechnology, 2017, 28(45): 455301

    Article  Google Scholar 

  36. Hu X, Wang H, Zhai C, et al. Fabrication of metallic patterns on highly curved substrates via nanoimprint lithography in association with an etch-in process. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2016, 4(47): 11104–11109

    Article  CAS  Google Scholar 

  37. Du Z, Wen Y, Pan L. Design and fabrication of electrostatic microcolumn with varying apertures in massively parallel electron beam lithography. In: Proceedings of ASME 2017 International Manufacturing Science and Engineering Conference (MSEC2017), 2017: 50725

  38. Yamada Y, Ito K, Miura A, et al. Simple and scalable preparation of master mold for nanoimprint lithography. Nanotechnology, 2017, 28(20): 205303

    Article  Google Scholar 

  39. Moharana A R, Außerhuber H M, Mitteramskogler T, et al. Multilayer nanoimprinting to create hierarchical stamp masters for nanoimprinting of optical micro- and nanostructures. Coatings, 2020, 10(3): 301

    Article  CAS  Google Scholar 

  40. Ki B, Song Y, Choi K, et al. Chemical imprinting of crystalline silicon with catalytic metal stamp in etch bath. ACS Nano, 2018, 12(1): 609–616

    Article  CAS  Google Scholar 

  41. Yamada K, Yamada M, Maki H, et al. Fabrication of arrays of tapered silicon micro-/nano-pillars by metal-assisted chemical etching and anisotropic wet etching. Nanotechnology, 2018, 29(28): 28LT01

    Article  CAS  Google Scholar 

  42. Gayrard M, Voronkoff J, Boissière C, et al. Replacing metals with oxides in metal-assisted chemical etching enables direct fabrication of silicon nanowires by solution processing. Nano Letters, 2021, 21(5): 2310–2317

    Article  CAS  Google Scholar 

  43. Zhang Y, Fang F. Development of planar diffractive waveguides in optical see-through head-mounted displays. Precision Engineering, 2019, 60: 482–496

    Article  Google Scholar 

  44. Arisoy F D, Czolkos I, Johansson A, et al. Low-cost, durable master molds for thermal-NIL, UV-NIL, and injection molding. Nanotechnology, 2020, 31(1): 015302

    Article  CAS  Google Scholar 

  45. Mattelin M A, Radosavljevic A, Missinne J, et al. Design and fabrication of blazed gratings for a waveguide-type head mounted display. Optics Express, 2020, 28(8): 11175–11190

    Article  CAS  Google Scholar 

  46. Li M, Chen Y, Luo W, et al. Interfacial interactions during demolding in nanoimprint lithography. Micromachines, 2021, 12(4): 349

    Article  Google Scholar 

  47. Peksen M. Hydrogen technology towards the solution of environment-friendly new energy vehicles. Energies, 2021, 14(16): 4892

    Article  CAS  Google Scholar 

  48. Su C W, Yuan X, Tao R, et al. Can new energy vehicles help to achieve carbon neutrality targets?. Journal of Environmental Management, 2021, 297: 113348

    Article  CAS  Google Scholar 

  49. Luce T, Schalle E, Ziegler N. The advent of polymer projector headlamp lenses. In: Proceedings of the International Symposium on Automotive Lighting, 2009

  50. Wang C, Li G, Hu F, et al. Visible light communication for vehicle to everything beyond 1 Gb/s based on an LED car headlight and a 2 × 2 PIN array. Chinese Optics Letters, 2020, 18(11): 110602

    Article  Google Scholar 

  51. Wu H H P, Lee Y P, Chang S H. Fast measurement of automotive headlamps based on high dynamic range imaging. Applied Optics, 2012, 51(28): 6870–6880

    Article  Google Scholar 

  52. Götz M, Kleinkes M. Headlamps for light based driver assistance. In: Proceedings of SPIE 7003: Optical Sensors, 2008: 70032B

  53. Hwang A D, Tuccar-Burak M, Goldstein R, et al. Impact of oncoming headlight glare with cataracts: a pilot study. Frontiers in Psychology, 2018, 9: 164

    Article  Google Scholar 

  54. Putze T, Raguse K, Maas H G. Configuration of multi mirror systems for single high-speed camera based 3D motion analysis. In: Proceedings of SPIE 6491: Videometrics IX — Measurement and modeling of 4D live mouse heart volumes from CT time series, 2007: 64910L

  55. Vasile M, Maddock C, Summerer L. Conceptual design of a multi-mirror system for asteroid deflection. Proceedings of the 27th International Symposium on Space Technology and Science, 2009, 5–12

  56. Ishida H, Kaneko A. Development of narrow headlamps by combining free formed surface system with projector system. SAE Technical Paper Series, 2002, 2002-01-0527

  57. Günther A. Optical concept for an active headlamp with a DMD array. Proceedings of SPIE the International Society for Optical Engineering, 2008, 7003: 70032D

    Google Scholar 

  58. Hsieh C C, Li Y H, Hung C C. Modular design of the LED vehicle projector headlamp system. Applied Optics, 2013, 52(21): 5221–5229

    Article  Google Scholar 

  59. Park I D. A study of the intersection in reduce car accidents for traffic signal light to supplement. Journal of the Korea Academia-Industrial Cooperation Society, 2020, 21(6): 296–301

    Google Scholar 

  60. Tang T Q, Yi Z Y, Lin Q F. Effects of signal light on the fuel consumption and emissions under car-following model. Physica A: Statistical Mechanics and its Applications, 2017, 469: 200–205

    Article  CAS  Google Scholar 

  61. Mügge M, Hohmann C. Signal lights — designed light for rear lamps and new upcoming technologies: innovations in automotive lighting. Advanced Optical Technologies, 2016, 5(a): 117–128

    Article  Google Scholar 

  62. Hu S, Yu G, Cen Y. Optimized thermal design of new reflex LED headlamp. Applied Optics, 2012, 51(22): 5563–5566

    Article  Google Scholar 

  63. Brick P, Schmid T. Automotive headlamp concepts with low-beam and high-beam out of a single LED. SPIE Proceedings: Illumination Optics II, 2011, 8170: 817008

    Article  Google Scholar 

  64. Krames M R, Shchekin O B, Mueller-Mach R, et al. Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology, 2007, 3(2): 160–175

    Article  CAS  Google Scholar 

  65. Nussbaum Ph, Völkel R, Herzig H P, et al. Design, fabrication and testing of microlens arrays for sensors and microsystems. Pure and Applied Optics: Journal of the European Optical Society Part A, 1997, 6(6): 617

    Article  Google Scholar 

  66. Khan M S, Rahlves M, Lachmayer R, et al. Polymer-based diffractive optical elements for rear end automotive applications: design and fabrication process. Applied Optics, 2018, 57(30): 9106–9113

    Article  CAS  Google Scholar 

  67. Liu C M, Su G D J. Enhanced light extraction from UV LEDs using spin-on glass microlenses. Journal of Micromechanics and Microengineering, 2016, 26(5): 055003

    Article  Google Scholar 

  68. Zhang X, Zhang Y, Zhang Y, et al. Fabrication of heteromorphic microlens arrays built in the TiO2/ormosils composite films for organic light-emitting diode applications. Applied Physics A: Materials Science & Processing, 2021, 127(9): 1–12

    Article  Google Scholar 

  69. Gatabi J R. Exposure tool for lithography on tilted and curved surfaces using spatial light modulator, 2013

  70. Hua J, Hua E, Zhou F, et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex. Light: Science & Applications, 2021, 10: 213

    Article  CAS  Google Scholar 

  71. Ginsberg J, Movva N. Dynamic field of view in a tomographic light field display. SMPTE Motion Imaging Journal, 2019, 128(1): 55–60

    Article  Google Scholar 

  72. Krebs P, Liang H, Fan H, et al. Homogeneous free-form directional backlight for 3D display. Optics Communications, 2017, 397: 112–117

    Article  CAS  Google Scholar 

  73. Chen G, Huang T, Fan Z, et al. A naked eye 3D display and interaction system for medical education and training. Journal of Biomedical Informatics, 2019, 100: 103319

    Article  Google Scholar 

  74. Wang Q H, Ji C C, Li L, et al. Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher. Optics Express, 2016, 24(1): 9–16

    Article  Google Scholar 

  75. Sando Y, Barada D, Yatagai T. Full-color holographic 3D display with horizontal full viewing zone by spatiotemporal-division multiplexing. Applied Optics, 2018, 57(26): 7622–7626

    Article  CAS  Google Scholar 

  76. Aydindogan G, Kavakli K, Şahin A, et al. Applications of augmented reality in ophthalmology. Biomedical Optics Express, 2021, 12(1): 511–538

    Article  Google Scholar 

  77. Yang L, Dong H, Alelaiwi A, et al. See in 3D: state of the art of 3D display technologies. Multimedia Tools and Applications, 2016, 75(24): 17121–17155

    Article  Google Scholar 

  78. Lee D, Kwak K, Jhun C G, et al. Maskless fabrication of film-patterned-retarder (FPR) using wedged liquid crystal cell. IEEE Photonics Journal, 2019, 11(6): 1–8

    Article  CAS  Google Scholar 

  79. Yuan W, Li L H, Lee W B, et al. Fabrication of microlens array and its application: a review. Chinese Journal of Mechanical Engineering, 2018, 31(1): 16

    Article  Google Scholar 

  80. Jeong Y J. Diffraction grating 3D display optimization. Applied Optics, 2019, 58(5): A21–A25

    Article  Google Scholar 

  81. Li X, Wang Y. Low crosstalk multi-view 3D display based on parallax barrier with dimmed subpixel. In: International Conference on Image and Graphics. Cham: Springer, 2021: 490–500

    Chapter  Google Scholar 

  82. Zhang Y, Yi D, Qiao W, et al. Directional backlight module based on pixelated nano-gratings. Optics Communications, 2020, 459: 125034

    Article  CAS  Google Scholar 

  83. Fattal D, Peng Z, Tran T, et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature, 2013, 495(7441): 348–351

    Article  CAS  Google Scholar 

  84. Li L, Ng M C, Chan M K, et al. Polymetric lenticular lens array design, ultra-precision machining and inspection technology for naked-eye 3D display. In: Proceedings of SPIE: Display Technology and Optical Storage, 2019

  85. Rose M A, Bowen J J, Morin S A. Emergent soft lithographic tools for the fabrication of functional polymeric microstructures. ChemPhysChem, 2019, 20(7): 909–925

    Article  CAS  Google Scholar 

  86. Roy E, Voisin B, Gravel J F, et al. Microlens array fabrication by enhanced thermal reflow process: towards efficient collection of fluorescence light from microarrays. Microelectronic Engineering, 2009, 86(11): 2255–2261

    Article  CAS  Google Scholar 

  87. Nakai A, Matsumoto K, Shimoyama I. A stereoscopic display with a vibrating microlens array. In: 2002 MEMS 15th IEEE International Conference on Micro Electro Mechanical Systems. IEEE, 2002, 524–552

  88. Surdo S, Diaspro A, Duocastella M. Microlens fabrication by replica molding of frozen laser-printed droplets. Applied Surface Science, 2017, 418: 554–558

    Article  CAS  Google Scholar 

  89. Luo J, Guo Y, Wang X. Rapid fabrication of curved microlens array using the 3D printing mold. Optik, 2018, 156: 556–563

    Article  CAS  Google Scholar 

  90. Li L, Ng M C, Chan M K, et al. Polymetric lenticular lens array design, ultra-precision machining and inspection technology for naked-eye 3D display. In: International Society for Optics and Photonics. AOPC 2019: Display Technology and Optical Storage, 2019, 11335: 113350P

  91. Chen L, Chen G, Liao L, et al. Naked-eye 3D display based on microlens array using combined micro-nano imprint and UV offset printing methods. Molecules, 2020, 25(9): 2012

    Article  CAS  Google Scholar 

  92. Cao A, Xue L, Pang Y, et al. Design and fabrication of flexible naked-eye 3D display film element based on microstructure. Micromachines, 2019, 10(12): 864

    Article  Google Scholar 

  93. Iimura Y, Onoe H, Teshima T, et al. Liquid-filled tunable lenticular lens. Journal of Micromechanics and Microengineering, 2015, 25(3): 035030

    Article  Google Scholar 

  94. Yeh C H, Shih C J, Wang H C, et al. Microlenticular lens replication by the combination of gas-assisted imprint technology and LIGA-like process. Journal of Micromechanics and Microengineering, 2012, 22(9): 095021

    Article  Google Scholar 

  95. Kawahara K, Kikuchi T, Natsui S, et al. Fabrication of ordered submicrometer-scale convex lens array via nanoimprint lithography using an anodized aluminum mold. Microelectronic Engineering, 2018, 185–186: 61–68

    Article  Google Scholar 

  96. Kikuchi T, Wachi Y, Takahashi T, et al. Fabrication of a meniscus microlens array made of anodic alumina by laser irradiation and electrochemical techniques. Electrochimica Acta, 2013, 94: 269–276

    Article  CAS  Google Scholar 

  97. Yuan R Y, Ma X L, Chu F, et al. Optofluidic lenticular lens array for a 2D/3D switchable display. Optics Express, 2021, 29(23): 37418–37428

    Article  CAS  Google Scholar 

  98. Kim C, Kim J, Shin D, et al. Electrowetting lenticular lens for a multi-view autostereoscopic 3D display. IEEE Photonics Technology Letters, 2016, 28(22): 2479–2482

    Article  CAS  Google Scholar 

  99. Kim J, Shin D, Lee J, et al. Electro-wetting lenticular lens with improved diopter for 2D and 3D conversion using lens-shaped ETPTA chamber. Optics Express, 2018, 26(15): 19614–19626

    Article  CAS  Google Scholar 

  100. Kim J, Kim S U, Lee B Y, et al. Lenticular lens array based on liquid crystal with a polarization-dependent focusing effect for 2D—3D image applications. Journal of Information Display, 2015, 16(1): 11–15

    Article  CAS  Google Scholar 

  101. Einck V J, Torfeh M, McClung A, et al. Scalable nanoimprint lithography process for manufacturing visible metasurfaces composed of high aspect ratio TiO2 meta-atoms. ACS Photonics, 2021, 8(8): 2400–2409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Key Research Project of Shenzhen (Grant No. JCYJ20210324115806017), the Innovation and Entrepreneurship Project for Overseas High-Level Talents of Shenzhen (Grant No. KQJSCX20180328095603847), the National Natural Science Foundation of China (Grant No. 51805331), and the National Key R&D Program of China (Grant No. 6142005180401).

Author information

Authors and Affiliations

Authors

Contributions

D.G. conceived of the main conceptual ideas and proof outline. X.W. supervised the project. Y.L. & J.L. drafted the manuscript and figures with input from Z.H., G.G., B.W., L.W., Z.P., J.J. and Q.Y. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Dengji Guo or Xu** Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lin, J., Hu, Z. et al. Recent research progress of master mold manufacturing by nanoimprint technique for the novel microoptics devices. Front. Mater. Sci. 16, 220596 (2022). https://doi.org/10.1007/s11706-022-0596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0596-6

Keywords

Navigation