Log in

Microwave hydrothermal synthesis of WO3(H2O)0.333/CdS nanocomposites for efficient visible-light photocatalytic hydrogen evolution

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

WO3(H2O)0.333/CdS (WS) nanocomposites are obtained via a rapid microwave hydrothermal method, and they are served as visible light-driven photocatalysts for the H2 generation. By using Pt as the cocatalyst, the WS nanocomposite with 70 wt.% CdS reaches the H2 evolution rate of 10.32 mmol·g−1·h−1, much quicker than those of WO3(H2O)0.333 and CdS. The cycling test reveals the good photocatalytic stability of the WS nanocomposite. The carrier transfer mechanism of WS nanocomposites can be explained by the Z-scheme mechanism. The existence of the Z-scheme heterojunction greatly helps to separate photogenerated carriers and thus improves the photocatalytic activity. The present work provides a rapid synthesis method for preparing Z-scheme heterojunction photocatalysts, and may be helpful for the green production of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Staffell I, Scamman D, Abad A V, et al. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 2019, 12(2): 463–191

    Article  CAS  Google Scholar 

  2. Dawood F, Anda M, Shafiullah G M. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 2020, 45(7): 3847–3869

    Article  CAS  Google Scholar 

  3. Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570

    Article  CAS  Google Scholar 

  4. Wang Q, Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chemical Reviews, 2020, 120(2): 919–985

    Article  CAS  Google Scholar 

  5. Elsayed M H, Jayakumar J, Abdellah M, et al. Visible-light-driven hydrogen evolution using nitrogen-doped carbon quantum dot-implanted polymer dots as metal-free photocatalysts. Applied Catalysis B: Environmental, 2021, 283: 119659

    Article  CAS  Google Scholar 

  6. Yuan Y J, Chen D, Yu Z T, et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(25): 11606–11630

    Article  CAS  Google Scholar 

  7. Singh R, Dutta S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel, 2018, 220: 607–620

    Article  CAS  Google Scholar 

  8. Li Z, Meng X, Zhang Z. Recent development on MoS2-based photocatalysis: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35: 39–55

    Article  Google Scholar 

  9. **ng Y P, Wang X K, Hao S H, et al. Recent advances in the improvement of g-C3N4 based photocatalytic materials. Chinese Chemical Letters, 2021, 32(1): 13–20

    Article  CAS  Google Scholar 

  10. Hao X Q, Zhou J, Cui Z W, et al. Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 229: 41–51

    Article  CAS  Google Scholar 

  11. Pan J, Shen S, Zhou W, et al. Recent progress in photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2020, 36(3): 1905068

    Article  Google Scholar 

  12. Liang Z Z, Shen R C, Ng Y H, et al. A review on 2D MoS2 cocatalysts in photocatalytic H2 production. Journal of Materials Science and Technology, 2020, 56: 89–121

    Article  Google Scholar 

  13. Zhao G, Xu X. Cocatalysts from types, preparation to applications in the field of photocatalysis. Nanoscale, 2021, 13(24): 10649–10667

    Article  CAS  Google Scholar 

  14. Zhao G, Hao S H, Guo J H, et al. Design of p-n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting. Chinese Journal of Catalysis, 2021, 42(3): 501–509

    Article  CAS  Google Scholar 

  15. Zhao G, **ng Y P, Hao S H, et al. Why the hydrothermal fluorinated method can improve photocatalytic activity of carbon nitride. Chinese Chemical Letters, 2021, 32(1): 277–281

    Article  CAS  Google Scholar 

  16. Cheng L, **ang Q J, Liao Y L, et al. CdS-based photocatalysts. Energy & Environmental Science, 2018, 11(6): 1362–1391

    Article  CAS  Google Scholar 

  17. Reza Gholipour M, Dinh C T, Béland F, et al. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale, 2015, 7(18): 8187–8208

    Article  CAS  Google Scholar 

  18. Ji C, Du C, Steinkruger J D, et al. In-situ hydrothermal fabrication of CdS/g-C3N4 nanocomposites for enhanced photocatalytic water splitting. Materials Letters, 2019, 240: 128–131

    Article  CAS  Google Scholar 

  19. Li L L, Yin X L, Pang D H, et al. One-pot synthesis of MoS2/CdS nanosphere heterostructures for efficient H2 evolution under visible light irradiation. International Journal of Hydrogen Energy, 2019, 44(60): 31930–31939

    Article  CAS  Google Scholar 

  20. Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 2019, 48(7): 2109–2125

    Article  CAS  Google Scholar 

  21. Jiang Z M, Chen Q, Zheng Q Q, et al. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2021, 37(6): 2010059

    Google Scholar 

  22. Shen R C, Ding Y N, Li S B, et al. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42(1): 25–36

    Article  CAS  Google Scholar 

  23. Zhang S J, Duan S H, Chen G L, et al. MoS2/Zn3In2S6 composite photocatalysts for enhancement of visible light-driven hydrogen production from formic acid. Chinese Journal of Catalysis, 2021, 42(1): 193–204

    Article  CAS  Google Scholar 

  24. Xu Q L, Ma D K, Yang S B, et al. Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation. Applied Surface Science, 2019, 495: 143555

    Article  CAS  Google Scholar 

  25. Ge H N, Xu F Y, Cheng B, et al. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2 production photocatalyst. ChemCatChem, 2019, 11(24): 6301–6309

    Article  CAS  Google Scholar 

  26. He F, Meng A Y, Cheng B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese Journal of Catalysis, 2020, 41(1): 9–20

    Article  CAS  Google Scholar 

  27. Ren D D, Zhang W N, Ding Y N, et al. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D-2D step-scheme heterojunctions for highly active H2 evolution. Solar RRL, 2020, 4(8): 1900423

    Article  CAS  Google Scholar 

  28. Fan H X, Zhou H L, Li W J, et al. Facile fabrication of 2D/2D step-scheme In2S3/Bi2O2CO3 heterojunction towards enhanced photocatalytic activity. Applied Surface Science, 2020, 504: 144351

    Article  CAS  Google Scholar 

  29. Luo J H, Lin Z X, Zhao Y, et al. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle. Chinese Journal of Catalysis, 2020, 41(1): 122–130

    Article  CAS  Google Scholar 

  30. Wang J, Wang G H, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chinese Journal of Catalysis, 2021, 42(1): 56–68

    Article  CAS  Google Scholar 

  31. Peng J J, Shen J, Yu X H, et al. Construction of LSPR-enhanced 0D/2D CdS/MoO3x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chinese Journal of Catalysis, 2021, 42(1): 87–96

    Article  CAS  Google Scholar 

  32. Wei J X, Chen Y W, Zhang H Y, et al. Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction. Chinese Journal of Catalysis, 2021, 42(1): 78–86

    Article  CAS  Google Scholar 

  33. Wageh S, Al-Ghamdi A A, Jafer R, et al. A new heterojunction in photocatalysis: S-scheme heterojunction. Chinese Journal of Catalysis, 2021, 42(5): 667–669

    Article  CAS  Google Scholar 

  34. Shen R C, Lu X Y, Zheng Q Q, et al. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2 evolution photocatalysts. Solar RRL, 2021, 5(7): 2100177

    Article  CAS  Google Scholar 

  35. Xu Q L, Zhang L Y, Cheng B, et al. S-scheme heterojunction photocatalyst. Chem, 2020, 6(7): 1543–1559

    Article  CAS  Google Scholar 

  36. Cao D, An H, Yan X Q, et al. Fabrication of Z-scheme heterojunction of SiC/Pt/CdS nanorod for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2020, 36(3): 1901051

    Article  Google Scholar 

  37. Gong H M, Hao X Q, ** Z L, et al. WP modified S-scheme Zn0.5Cd0.5S/WO3 for efficient photocatalytic hydrogen production. New Journal of Chemistry, 2019, 43(48): 19159–19171

    Article  CAS  Google Scholar 

  38. He R G, Liu H J, Liu H M, et al. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance. Journal of Materials Science and Technology, 2020, 52: 145–151

    Article  Google Scholar 

  39. Zhang N, Chen D, Cai B C, et al. Facile synthesis of CdS-ZnWO4 composite photocatalysts for efficient visible light driven hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42(4): 1962–1969

    Article  CAS  Google Scholar 

  40. Yuan M, Zhou W H, Kou D X, et al. Cu2ZnSnS4 decorated CdS nanorods for enhanced visible-light-driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2018, 43(45): 20408–20416

    Article  CAS  Google Scholar 

  41. Wei L, Zeng D, **e Z, et al. NiO nanosheets coupled with CdS nanorods as 2D/1D heterojunction for improved photocatalytic hydrogen evolution. Frontiers in Chemistry, 2021, 9: 655583

    Article  CAS  Google Scholar 

  42. Zhang R L, Wang C, Chen H, et al. Cadmium sulfide inverse opal for photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2020, 36(3): 1803014

    Article  Google Scholar 

  43. Shen R C, Ren D D, Ding Y N, et al. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Science China: Materials, 2020, 63(11): 2153–2188

    CAS  Google Scholar 

  44. Ren D D, Shen R C, Jiang Z M, et al. Highly efficient visible-light photocatalytic H2 evolution over 2D 2D CdS/Cu7S4 layered heterojunctions. Chinese Journal of Catalysis, 2020, 41(1): 31–40

    Article  CAS  Google Scholar 

  45. Li Z, Wang X, Zhang J F, et al. Preparation of Z-scheme WO3(H2O)0.333/Ag3PO4 composites with enhanced photocatalytic activity and durability. Chinese Journal of Catalysis, 2019, 40(3): 326–334

    Article  CAS  Google Scholar 

  46. Li Z, Ma T T, Zhang X, et al. In2Se3/CdS nanocomposites as high efficiency photocatalysts for hydrogen production under visible light irradiation. International Journal of Hydrogen Energy, 2021, 46(29): 15539–15549

    Article  CAS  Google Scholar 

  47. Li Z, ** D, Wang Z H. ZnO/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for photocatalytic hydrogen evolution. Applied Surface Science, 2020, 529: 147071

    Article  CAS  Google Scholar 

  48. Ma S, Deng Y P, **e J, et al. Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high efficiency visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 227: 218–228

    Article  CAS  Google Scholar 

  49. Di T M, Cheng B, Ho W K, et al. Hierarchically CdS-Ag2S nanocomposites for efficient photocatalytic H2 production. Applied Surface Science, 2019, 470: 196–204

    Article  CAS  Google Scholar 

  50. Chen J, **o X, Wang Y, et al. Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Applied Surface Science, 2019, 467: 1000–1010

    Google Scholar 

  51. Li Y, Wei X, Yan X, et al. Construction of inorganic-organic 2D/2D WO3/g-C3N4 nanosheet arrays toward efficient photoelectrochemical splitting of natural seawater. Physical Chemistry Chemical Physics, 2016, 18(15): 10255–10261

    Article  CAS  Google Scholar 

  52. Ma D, Shi J W, Zou Y, et al. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanoplates 0D/2D heterojunction for hydrogen evolution from water splitting. ACS Applied Materials & Interfaces, 2017, 9(30): 25377–25386

    Article  CAS  Google Scholar 

  53. Kim D, Yong K. Boron do** induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021, 282: 119538

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the National Natural Science Foundation of China (Grant No. 21671007) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Li, Z., Liu, W. et al. Microwave hydrothermal synthesis of WO3(H2O)0.333/CdS nanocomposites for efficient visible-light photocatalytic hydrogen evolution. Front. Mater. Sci. 15, 589–600 (2021). https://doi.org/10.1007/s11706-021-0581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0581-5

Keywords

Navigation