Log in

Effect of silk sericin on morphology and structure of calcium carbonate crystal

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faatz M, Grohn F, Wegner G, et al. Mineralization of calcium carbonate by controlled release of carbonate in aqueous solution. Materials Science and Engineering C, 2005, 25(2): 153–159

    Article  Google Scholar 

  2. Heap A D, Dickens G R, Stewart L K, et al. Holocene storage of siliciclastic sediment around islands on the middle shelf of the Great Barrier Reef Platform, north-east Australia. Sedimentology, 2002, 49(3): 603–621

    Article  CAS  Google Scholar 

  3. Yu J, Lei M, Cheng B. Facile preparation of monodispersed calcium carbonate spherical particles via a simple precipitation reaction. Materials Chemistry and Physics, 2004, 88(1): 1–4

    Article  CAS  Google Scholar 

  4. ** Y, Liu W C, Wang J R, et al. (Protamine/dextran sulfate)6 microcapules templated on biocompatible calcium carbonate microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 342(1–3): 40–45

    Article  CAS  Google Scholar 

  5. Li S, Yu L, Geng F, et al. Facile preparation of diversified patterns of calcium carbonate in the presence of DTAB. Journal of Crystal Growth, 2010, 312(10): 1766–1773

    Article  CAS  Google Scholar 

  6. Ukrainczyk M, Kontrec J, Kralj D. Precipitation of different calcite crystal morphologies in the presence of sodium stearate. Journal of Colloid and Interface Science, 2009, 329(1): 89–96

    Article  CAS  Google Scholar 

  7. **e A J, Shen Y H, Zhang C Y, et al. Crystal growth of calcium carbonate with various morphologies in different amino acid systems. Journal of Crystal Growth, 2005, 285(3): 436–443

    Article  CAS  Google Scholar 

  8. Zhang Q, Wang X-H. Biomimetic synthesis of amorphous calcium carbonate in phosphatidylcholine solution. Journal of Synthetic Crystals, 2010, 39(2): 529–533

    Google Scholar 

  9. Wang T, Leng B, Che R, et al. Biomimetic synthesis of multilayered aragonite aggregates using alginate as crystal growth modifier. Langmuir, 2010, 26(16): 13385–13392

    Article  CAS  Google Scholar 

  10. Jimenez-Lopez C, Rodriguez-Navarro A, Dominguez-Vera JM, et al. Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study. Geochimica et Cosmochimica Acta, 2003, 67(9): 1667–1676

    Article  CAS  Google Scholar 

  11. Hernández-Hernández A, Vidal M L, Gómez-Morales J, et al. Influence of eggshell matrix proteins on the precipitation of calcium carbonate (CaCO3). Journal of Crystal Growth, 2008, 310(7–9): 1754–1759

    Article  Google Scholar 

  12. Kong X D, Cui F Z, Wang X M, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2004, 270(1–2): 197–202

    Article  CAS  Google Scholar 

  13. Cho K Y, Moon J Y, Lee YW, et al. Preparation of self-assembled silk sericin nanoparticles. International Journal of Biological Macromolecules, 2003, 32(1–2): 36–42

    Article  CAS  Google Scholar 

  14. Dash B C, Mandal B B, Kundu S C. Silk gland sericin protein membranes: fabrication and characterization for potential biotechnological applications. Journal of Biotechnology, 2009, 144(4): 321–329

    Article  CAS  Google Scholar 

  15. Sarovart S, Sudatis B, Meesilpa P, et al. The use of sericin as an antioxidant and antimicrobial for polluted air treatment. Reviews on Advanced Materials Science, 2003, 5: 193–198

    CAS  Google Scholar 

  16. Kang S H, Hirasawa I, Kim W S, et al. Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT. Journal of Colloid and Interface Science, 2005, 288(2): 496–502

    Article  CAS  Google Scholar 

  17. Cai Y R, ** J, Mei D P, et al. Effect of silk sericin on assembly of hydroxyapatite nanocrystals into enamel prism-like structure. Journal of Materials Chemistry, 2009, 19(32): 5751–5758

    Article  CAS  Google Scholar 

  18. Wu G, Wang Y, Zhu S, et al. Preparation of ultrafine calcium carbonate particles with micropore dispersion method. Powder Technology, 2007, 172(2): 82–88

    Article  CAS  Google Scholar 

  19. Cheng C, Shao Z, Vollrath F. Silk fibroin-regulated crystallization of calcium carbonate. Advanced Functional Materials, 2008, 18(15): 2172–2179

    Article  CAS  Google Scholar 

  20. Kawano J, Shimobayashi N, Kitamura M, et al. Formation process of calcium carbonate from highly supersaturated solution. Journal of Crystal Growth, 2002, 237–239(Part 1): 419–423

    Article  Google Scholar 

  21. Yang H, Yao W, Yang L, et al. The self-assembly of CaCO3 crystals in the presence of protein. Journal of Crystal Growth, 2009, 311(9): 2682–2688

    Article  CAS  Google Scholar 

  22. **ao J W, Wang Z N, Tang Y C, et al. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: From an amorphous calcium carbonate precursor to calcite via vaterite. Langmuir, 2010, 26(7): 4977–4983

    Article  CAS  Google Scholar 

  23. Xu X, Han J T, Cho K. Deposition of amorphous calcium carbonate hemispheres on substrates. Langmuir, 2005, 21(11): 4801–4804

    Article  CAS  Google Scholar 

  24. Chen Y, **ao J, Wang Z, et al. Observation of an amorphous calcium carbonate precursor on a stearic acid monolayer formed during the biomimetic mineralization of CaCO3. Langmuir, 2009, 25(2): 1054–1059

    Article  CAS  Google Scholar 

  25. Shen F H, Feng Q L, Wang C M. The modulation of collagen on crystal morphology of calcium carbonate. Journal of Crystal Growth, 2002, 242(1–2): 239–244

    Article  CAS  Google Scholar 

  26. Huang F, Shen Y, **e A, et al. Synthesis of calcite with novel morphologies and epitaxial growth calcium bilirubinate (CaBR) on calcite and effects of dipalmitoylposphatidylcholine (DPPC) monolayer and dextran. Crystal Growth & Design, 2009, 9(2): 722–727

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ang-Dong Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, RB., Han, HF., Ding, S. et al. Effect of silk sericin on morphology and structure of calcium carbonate crystal. Front. Mater. Sci. 7, 177–183 (2013). https://doi.org/10.1007/s11706-013-0202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-013-0202-z

Keywords

Navigation