Log in

Monocrystalline silicon used for integrated circuits: still on the way

  • Review Article
  • Published:
Frontiers of Materials Science in China Aims and scope Submit manuscript

Abstract

With the rapid development of semiconductor technology, highly integrated circuits (ICs) and future nano-scale devices require large diameter and defect-free monocrystalline silicon wafers. The ongoing innovation from silicon materials is one of the driving forces in future micro and nano-technologies. In this work, the recent developments in the controlling of large diameter silicon crystal growth processes, the improvement of material features by co-do** with the intend-introduced impurities, and the progress of defect engineered silicon wafers (epitaxial silicon wafer, strained silicon, silicon on insulator) are reviewed. It is proposed that the silicon manufacturing infrastructure could still meet the increasingly stringent requirements arising from ULSI circuits and will expand Moore’s law into a couple of decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semiconductor Industry Association. The International Technology Roadmap for Semiconductors (2005 edition). San Jose, California, 2005

  2. Arden W. Future semiconductor material requirements and innovations as projected in the ITRS 2005 roadmap. Materials Science and Engineering: B, 2006, 134(2–3): 104–108

    Article  ADS  CAS  Google Scholar 

  3. Mozer A P. New developments in silicon Czochralski crystal growth and wafer technology. Materials Science and Engineering: B, 2000, 73(1–3): 36–41

    Article  Google Scholar 

  4. Yu X, Yang D, Ma X, et al. Grown-in defects in nitrogendoped Czochralski silicon. Journal of Applied Physics, 2002, 92(1): 188–194

    Article  ADS  CAS  Google Scholar 

  5. Chen J, Yang D, Li H, et al. Enhancement effect of germanium on oxygen precipitation in Czochralski silicon. Journal of Applied Physics, 2006, 99(7): 073509 (5 pages)

    Article  ADS  CAS  Google Scholar 

  6. Tsuya H. Present status and prospect of Si wafers for ultra large scale integration. Japanese Journal of Applied Physics, 2004, 43: 4055–4067

    Article  ADS  CAS  Google Scholar 

  7. Chandrasekhar S, Kim K M. Growth of large diameter necks for large size CZ silicon, semiconductor silicon. In: Huff H R, Tsuya H, Gssele U, eds. Electronics Division PV. Pennington: The Electrochemical Society, 1998, vols. 98–101, 411

    Google Scholar 

  8. Yip V F S, Wilcox W R. Dislocation elimination in THM growth of GaAs. Journal of Crystal Growth, 1976, 36(1): 29–35

    Article  ADS  CAS  Google Scholar 

  9. Shiraishi Y, Takano K, Matsubara J, et al. Growth of silicon crystal with a diameter of 400 mm and weight of 400 kg. Journal of Crystal Growth, 2001, 229(1–4): 17–21

    Article  ADS  CAS  Google Scholar 

  10. Abe T. In: Proceedings of the 6th International Symposium on Ultra Large Scale Integration Science and Technology 1997. Pennington: The Electrochemical Society, 1997, vols. 97–103, 123

    Google Scholar 

  11. Hoshikawa K, Huang X, Taishi T, et al. Dislocation-free Czochralski silicon crystal growth without the dislocationelimination dislocationelimination-necking process. Japanese Journal of Applied Physics, 1999, 38: L1369–L1371

    Article  ADS  Google Scholar 

  12. Huang X, Taishi T, Yonenaga I, et al. Dislocation-free Czochralski Si crystal growth without dash necking using a heavily B and Ge codoped Si seed. Japanese Journal of Applied Physics, 2000, 39: L1115–L1117

    Article  ADS  CAS  Google Scholar 

  13. Watanabe M, Yi KW, Hibiya T, et al. Direct observation and numerical simulation of molten silicon flow during crystal growth under magnetic fields by x-ray radiography and large-scale computation. Progress in Crystal Growth and Characterization of Materials, 1999, 38(1–4): 215–238

    Article  CAS  Google Scholar 

  14. Yu H, Sui Y, Zhang F, et al. Numerical simulation of a Czochralski silicon crystal growth with a large diameter 300 mm under a cusp magnetic field. Journal of Inorganic Materials, 2005, 20(2): 453–458 (in Chinese)

    ADS  CAS  Google Scholar 

  15. Wang C, Zhang H, Wang T H, et al. A continuous Czochralski silicon crystal growth system. Journal of Crystal Growth, 2003, 250(1–2): 209–214

    Article  ADS  CAS  Google Scholar 

  16. Watanabe M, Vizman D, Friedrich J, et al. Large modification of crystal-melt interface shape during Si crystal growth by using electromagnetic Czochralski method (EMCZ). Journal of Crystal Growth, 2006, 292(2): 252–256

    Article  ADS  CAS  Google Scholar 

  17. Watanabe M, Eguchi M, Wang W, et al. Controlling oxygen concentration and distribution in 200 mm diameter Si crystals using the electromagnetic Czochralski (EMCZ) method. Journal of Crystal Growth, 2002, 237–239: 1657–1662

    Article  Google Scholar 

  18. Virbulis J, Wetzel Th, Tomzig E, et al. Silicon melt convection in large size Czochralski crucibles. Materials Science in Semiconductor Processing, 2002, 5(4–5): 353–359

    Article  CAS  Google Scholar 

  19. Gorbunov L, Pedchenko A, Feodorov A, et al. Physical modelling of the melt flow during large-diameter silicon single crystal growth. Journal of Crystal Growth, 2003, 257(1–2): 7–18

    Article  ADS  CAS  Google Scholar 

  20. Akatsuka M, Sueoka K. Pinning effect of punched-out dislocations in carbon-, nitrogen-or boron-doped silicon wafers. Japanese Journal of Applied Physics, 2001, 40: 1240–1241

    Article  ADS  CAS  Google Scholar 

  21. Yang D, Que D, Sumino K. Nitrogen effects on thermal donor and shallow thermal donor in silicon. Journal of Applied Physics, 1995, 77(2): 943–944

    Article  ADS  CAS  Google Scholar 

  22. Nakai K, Inoue Y, Yokota H, et al. Oxygen precipitation in nitrogen-doped Czochralski-grown silicon crystals. Journal of Applied Physics, 2001, 89(8): 4301–4309

    Article  ADS  CAS  Google Scholar 

  23. Shimura F, Hockett R S. Nitrogen effect on oxygen precipitation in Czochralski silicon. Applied Physics Letters, 1986, 48(3): 224–226

    Article  ADS  CAS  Google Scholar 

  24. Cui C, Yang D, Ma X, et al. Effect of nitrogen do** on denuded zone formed by rapid thermal process in Czochralski silicon wafer. Physica B: Condensed Matter, 2006, 376–377: 216–219

    Article  CAS  Google Scholar 

  25. Yang D, Chen J, Li H, et al. Micro-defects in Ge doped Czochralski grown Si crystals. Journal of Crystal Growth, 2006, 292(2): 266–271

    Article  ADS  CAS  MathSciNet  Google Scholar 

  26. Li H, Yang D, Ma X, et al. Germanium effect on oxygen precipitation in Czochralski silicon. Journal of Applied Physics, 2004, 96(8): 4161–4165

    Article  ADS  CAS  Google Scholar 

  27. Taishi T, Huang X, Yonenaga I, et al. Dislocation behavior in heavily germanium-doped silicon crystal. Materials Science in Semiconductor Processing, 2002, 5(4–5): 409–412

    Article  CAS  Google Scholar 

  28. Chen J, Yang D, Ma X, et al. Intrinsic gettering Based on rapid thermal annealing in germanium-doped Czochralski silicon. Journal of Applied Physics, 2007, 101(3): 033526 (4 pages)

    Article  ADS  CAS  Google Scholar 

  29. Porrini M, Voronkov V V, Falster R. The effect of carbon and antimony on grown-in microdefects in Czochralski silicon crystals. Materials Science and Engineering: B, 2006, 134(2–3): 185–188

    Article  CAS  Google Scholar 

  30. Nakai K, Kitahara K, Ohta Y, et al. Crystal defects in epitaxial layer on nitrogen-doped Czochralski-grown silicon substrate (II) — Suppression of the crystal defects in epitaxial layer by the control of crystal growth condition and carbon codo**. Japanese Journal of Applied Physics, 2004, 43: 1247–1253

    Article  ADS  CAS  Google Scholar 

  31. Imai M, Inoue K, Mayusumi M, et al. Surface imperfection behavior during the SiH4 epitaxial growth process. Journal of the Electrochemical Society, 2000, 147(4): 1568–1572

    Article  CAS  Google Scholar 

  32. Nakai K, Kitahara K, Ohta Y, et al. In: Richter H, Kittler M, eds. Solid State Phenomena. Switzerland: Scitec Publications Ltd, 2004, vols. 95–96, 11

    Google Scholar 

  33. MiiY J, **e YH, Fitzgerald E A, et al. Extremely high electron mobility in Si/GexSi1−x structures grown by molecular beam epitaxy. Applied Physics Letters, 1991, 59(13): 1611–1613

    Article  ADS  Google Scholar 

  34. Kim S-J, Shim T-H, Park J-G, et al. Post-RTA effect on the electrical characteristics of nano-scale strained Si grown on SiGe-on-insulator n-MOSFET. Journal of the Korean Physical Society, 2007, 50(2): 514–518

    Article  CAS  Google Scholar 

  35. Tezuka T, Sugiyama N, Mizuno T, et al. A novel fabrication technique of ultra-thin and relaxed SiGe buffer layers with high Ge content for sub-100 nm strained silicon-on-insulator MOSFETs. In: Extended Abstracts of the 2000 International Conference on Solid State Devices and Materials, 2000, 472–473

  36. Park J-G, Lee G-S, Kim T-H, et al. Strained Si engineering for nanoscale MOSFETs. Materials Science and Engineering: B, 2006, 134(2–3): 142–153

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-ren Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Jh., Yang, Dr. & Que, Dl. Monocrystalline silicon used for integrated circuits: still on the way. Front. Mater. Sci. China 2, 335–344 (2008). https://doi.org/10.1007/s11706-008-0062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-008-0062-0

Keywords

Navigation