Log in

Enhanced bioethanol production from sugarcane bagasse: combination of liquid hot water and deep eutectic solvent pretreatment for optimized enzymatic saccharification

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, a sustainable pretreatment methodology combining liquid hot water and deep eutectic solvent is proposed for the efficient fractionation of hemicellulose, cellulose, and lignin from sugarcane bagasse, thereby facilitating the comprehensive utilization of both C5 and C6 sugars. The application of this combined pretreatment strategy to sugarcane bagasse led to notable enhancements in enzymatic saccharification and subsequent fermentation. Experiment results demonstrate that liquid hot water-deep eutectic solvent pretreatment yielded 85.05 ± 0.66 g·L−1 of total fermentable sugar (glucose: 60.96 ± 0.21 g·L−1, xylose: 24.09 ± 0.87 g·L−1) through enzymatic saccharification of sugarcane bagasse. Furthermore, fermentation of the pretreated sugarcane bagasse hydrolysate yielded 34.33 ± 3.15 g·L−1 of bioethanol. These findings confirm the effectiveness of liquid hot water-deep eutectic solvent pretreatment in separating lignocellulosic components, thus presenting a sustainable and promising pretreatment method for maximizing the valuable utilization of biomass resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaurav N, Sivasankari S, Kiran G S, Ninawe A, Selvin J. Utilization of bioresources for sustainable biofuels: a review. Renewable & Sustainable Energy Reviews, 2017, 73(7): 205–214

    Article  CAS  Google Scholar 

  2. Bórawski P, Bełdycka Bórawska A, Szymańska E J, Jankowski K J, Dubis B, Dunn J W. Development of renewable energy sources market and biofuels in the European Union. Journal of Cleaner Production, 2019, 228: 467–484

    Article  Google Scholar 

  3. Ashby R D, Qureshi N, Strahan G D, Johnston D B, Msanne J, Lin X. Corn stover hydrolysate and levulinic acid: mixed substrates for short-chain polyhydroxyalkanoate production. Biocatalysis and Agricultural Biotechnology, 2022, 43: 102391

    Article  CAS  Google Scholar 

  4. De Bhowmick G, Sarmah A K, Sen R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresource Technology, 2018, 247: 1144–1154

    Article  CAS  PubMed  Google Scholar 

  5. Osman A I, Qasim U, Jamil F, Al-Muhtaseb A H, Jrai A A, Al-Riyami M, Al-Maawali S, Al-Haj L, Al-Hinai A, Al-Abri M, et al. Bioethanol and biodiesel: bibliometric map**, policies and future needs. Renewable & Sustainable Energy Reviews, 2021, 152: 111677

    Article  CAS  Google Scholar 

  6. Ebadian M, van Dyk S, McMillan J D, Saddler J. Biofuels policies that have encouraged their production and use: an international perspective. Energy Policy, 2020, 147: 111906

    Article  Google Scholar 

  7. Chen J, Zhang B, Luo L, Zhang F, Yi Y, Shan Y, Liu B, Zhou Y, Wang X, Lü X. A review on recycling techniques for bioethanol production from lignocellulosic biomass. Renewable & Sustainable Energy Reviews, 2021, 149: 111370

    Article  CAS  Google Scholar 

  8. Rezania S, Oryani B, Cho J, Talaiekhozani A, Sabbagh F, Hashemi B, Rupani P F, Mohammadi A A. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy, 2020, 199: 117457

    Article  CAS  Google Scholar 

  9. Sawhney D, Vaid S, Bangotra R, Sharma S, Dutt H C, Kapoor N, Mahajan R, Bajaj B K. Proficient bioconversion of rice straw biomass to bioethanol using a novel combinatorial pretreatment approach based on deep eutectic solvent, microwave irradiation and laccase. Bioresource Technology, 2023, 375: 128791

    Article  CAS  PubMed  Google Scholar 

  10. Huang J, Khan M T, Perecin D, Coelho S T, Zhang M. Sugarcane for bioethanol production: potential of bagasse in Chinese perspective. Renewable & Sustainable Energy Reviews, 2020, 133: 110296

    Article  CAS  Google Scholar 

  11. Vieira S, Barros M V, Sydney A C N, Piekarski C M, de Francisco A C, Vandenberghe L P S, Sydney E B. Sustainability of sugarcane lignocellulosic biomass pretreatment for the production of bioethanol. Bioresource Technology, 2020, 299: 122635

    Article  CAS  PubMed  Google Scholar 

  12. Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, Show P L, Sun F. Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. Bioresource Technology, 2023, 368: 128356

    Article  CAS  PubMed  Google Scholar 

  13. Dharmaraja J, Shobana S, Arvindnarayan S, Francis R R, Jeyakumar R B, Saratale R G, Ashokkumar V, Bhatia S K, Kumar V, Kumar G. Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications. Bioresource Technology, 2023, 369: 128328

    Article  CAS  PubMed  Google Scholar 

  14. Zheng X, **an X, Hu L, Tao S, Zhang X, Liu Y, Lin X. Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid-liquid separation, water washing, and detoxification. Bioresource Technology, 2021, 339: 125575

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Zheng X, Tao S, Hu L, Zhang X, Lin X. Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renewable Energy, 2021, 177: 259–267

    Article  CAS  Google Scholar 

  16. Zhao L, Sun Z F, Zhang C C, Nan J, Ren N Q, Lee D J, Chen C. Advances in pretreatment of lignocellulosic biomass for bioenergy production: challenges and perspectives. Bioresource Technology, 2022, 343: 126123

    Article  CAS  PubMed  Google Scholar 

  17. Mankar A R, Pandey A, Modak A, Pant K K. Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresource Technology, 2021, 334: 125235

    Article  CAS  PubMed  Google Scholar 

  18. Basak B, Kumar R, Bharadwaj A, Kim T H, Kim J R, Jang M, Oh S E, Roh H S, Jeon B H. Advances in physicochemical pretreatment strategies for lignocellulose biomass and their effectiveness in bioconversion for biofuel production. Bioresource Technology, 2023, 369: 128413

    Article  CAS  PubMed  Google Scholar 

  19. Wu M, Gong L, Ma C, He Y C. Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresource Technology, 2021, 340: 125695

    Article  CAS  PubMed  Google Scholar 

  20. **a F, Gong J, Lu J, Cheng Y, Zhai S, An Q, Wang H. Combined liquid hot water with sodium carbonate-oxygen pretreatment to improve enzymatic saccharification of reed. Bioresource Technology, 2020, 297: 122498

    Article  CAS  PubMed  Google Scholar 

  21. Huang C, Zhan Y, Wang J, Cheng J, Meng X, Liang L, Liang F, Deng Y, Fang G, Ragauskas A J. Valorization of bamboo biomass using combinatorial pretreatments. Green Chemistry, 2022, 24(9): 3736–3749

    Article  CAS  Google Scholar 

  22. **an X, Zheng X, Huang J, Qureshi N, Li B, Liu J, Zeng Y, Nichols N N, Lin X. Detoxification of high solid-liquid hydrothermal pretreated sugar cane bagasse by chromatographic adsorption for cellulosic ethanol production. Industrial Crops and Products, 2023, 202: 117048

    Article  CAS  Google Scholar 

  23. **an X, Fang L, Zhou Y, Li B, Zheng X, Liu Y, Lin X. Integrated bioprocess for cellulosic ethanol production from wheat straw: new ternary deep-eutectic-solvent pretreatment, enzymatic saccharification, and fermentation. Fermentation (Basel, Switzerland), 2022, 8(8): 371

    CAS  Google Scholar 

  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618. 2008

  25. Diaz S, Ortega Z, Benitez A N, Costa D, Carvalheiro F, Fernandes M C, Duarte L C. Assessment of the effect of autohydrolysis treatment in banana’s pseudostem pulp. Waste Management (New York, N.Y.), 2021, 119: 306–314

    Article  CAS  PubMed  Google Scholar 

  26. Ma X J, Cao S L, Lin L, Luo X L, Hu H C, Chen L H, Huang L L. Hydrothermal pretreatment of bamboo and cellulose degradation. Bioresource Technology, 2013, 148: 408–413

    Article  CAS  PubMed  Google Scholar 

  27. Batista G, Souza R B A, Pratto B, Dos Santos-Rocha M S R, Cruz A J G. Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 2019, 275: 321–327

    Article  CAS  PubMed  Google Scholar 

  28. Zabed H M, Akter S, Yun J, Zhang G, Awad F N, Qi X, Sahu J N. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable & Sustainable Energy Reviews, 2019, 105: 105–128

    Article  CAS  Google Scholar 

  29. Shinde S D, Meng X, Kumar R, Ragauskas A J. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 2018, 20(10): 2192–2205

    Article  CAS  Google Scholar 

  30. Hu F, Jung S, Ragauskas A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, 2012, 117: 7–12

    Article  CAS  PubMed  Google Scholar 

  31. Wu R, Wang X, Zhang Y, Fu Y, Qin M. Efficient removal of surface-deposited pseudo-lignin and lignin droplets by isothermal phase separation during hydrolysis. Bioresource Technology, 2022, 345: 126533

    Article  CAS  PubMed  Google Scholar 

  32. Ceaser R, Rosa S, Montane D, Constanti M, Medina F. Optimization of softwood pretreatment by microwave-assisted deep eutectic solvents at high solids loading. Bioresource Technology, 2023, 369: 128470

    Article  CAS  PubMed  Google Scholar 

  33. Varilla-Mazaba A, Raggazo-Sánchez J A, Calderón-Santoyo M, Gómez-Rodríguez J, Aguilar-Uscanga M G. Optimization of lignin extraction by response surface methodology from sugarcane bagasse using deep eutectic solvents (DES). Industrial Crops and Products, 2022, 184: 115040

    Article  CAS  Google Scholar 

  34. Lu A, Yu X, Chen L, Okonkwo C E, Otu P, Zhou C, Lu Q, Sun Q. Development of novel ternary deep eutectic pretreatment solvents from lignin-derived phenol, and its efficiency in delignification and enzymatic hydrolysis of peanut shells. Renewable Energy, 2023, 205: 617–626

    Article  CAS  Google Scholar 

  35. Wang Y, Meng X, Jeong K, Li S, Leem G, Kim K H, Pu Y, Ragauskas A J, Yoo C G. Investigation of a lignin-based deep eutectic solvent using p-hydroxybenzoic acid for efficient woody biomass conversion. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12542–12553

    Article  CAS  Google Scholar 

  36. ** M, da Costa Sousa L, Schwartz C, He Y, Sarks C, Gunawan C, Balan V, Dale B E. Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chemistry, 2016, 18(4): 957–966

    Article  CAS  Google Scholar 

  37. Ayodele B V, Alsaffar M A, Mustapa S I. An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. Journal of Cleaner Production, 2020, 245: 118857

    Article  Google Scholar 

  38. Shen B, Hou S, Jia Y, Yang C, Su Y, Ling Z, Huang C, Lai C, Yong Q. Synergistic effects of hydrothermal and deep eutectic solvent pretreatment on co-production of xylo-oligosaccharides and enzymatic hydrolysis of poplar. Bioresource Technology, 2021, 341: 125787

    Article  CAS  PubMed  Google Scholar 

  39. Orij R, Brul S, Smits G J. Intracellular pH is a tightly controlled signal in yeast. Biochimica et Biophysica Acta. G, General Subjects, 2011, 1810(10): 933–944

    Article  CAS  Google Scholar 

  40. Mira N P, Palma M, Guerreiro J F, Sa-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories, 2010, 9(1): 79–91

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu X, Jia B, Sun X, Ai J, Wang L, Wang C, Zhao F, Zhan J, Huang W. Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. Journal of Food Science, 2015, 80(4): M800–M808

    Article  CAS  PubMed  Google Scholar 

  42. Kumar V, Yadav S K, Kumar J, Ahluwalia V. A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresource Technology, 2020, 299: 122633

    Article  CAS  PubMed  Google Scholar 

  43. Jonsson L J, Alriksson B, Nilvebrant N O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 2013, 6(1): 16

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee S Y, Kim H U, Chae T U, Cho J S, Kim J W, Shin J H, Kim D I, Ko Y S, Jang W D, Jang Y S. Jang Y S. A comprehensive metabolic map for production of bio-based chemicals. Nature Catalysis, 2019, 2(1): 18–33

    Article  CAS  Google Scholar 

  45. Wang R, Wang K, Zhou M, Xu J, Jiang J. Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. Bioresource Technology, 2021, 328: 124873

    Article  CAS  PubMed  Google Scholar 

  46. Ji Q, Yu X, Yagoub A E G A, Chen L, Zhou C. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Industrial Crops and Products, 2020, 149: 112357

    Article  CAS  Google Scholar 

  47. Ong V Z, Wu T Y, Chu K K L, Sun W Y, Shak K P Y. A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds. Industrial Crops and Products, 2021, 160: 112974

    Article  CAS  Google Scholar 

  48. Shang G, Zhang C, Wang F, Qiu L, Guo X, Xu F. Liquid hot water pretreatment to enhance the anaerobic digestion of wheat straw-effects of temperature and retention time. Environmental Science and Pollution Research International, 2019, 26(28): 29424–29434

    Article  CAS  PubMed  Google Scholar 

  49. Xu J, Zhou P, Liu X, Yuan L, Zhang C, Dai L. Tandem character of liquid hot water and deep eutectic solvent to enhance lignocellulose deconstruction. ChemSusChem, 2021, 14(13): 2740–2748

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for financial support of this research (Grant Nos. 21978053, 51508547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoqing Lin.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

11705_2024_2438_MOESM1_ESM.pdf

Enhanced bioethanol production from sugar cane bagasse: combination of liquid hot water and deep eutectic solvent pretreatment for optimized enzymatic saccharification

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**an, X., Li, B., Feng, S. et al. Enhanced bioethanol production from sugarcane bagasse: combination of liquid hot water and deep eutectic solvent pretreatment for optimized enzymatic saccharification. Front. Chem. Sci. Eng. 18, 85 (2024). https://doi.org/10.1007/s11705-024-2438-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2438-9

Keywords

Navigation