Log in

From plasma to plasmonics: toward sustainable and clean water production through membranes

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The increasing demand for potable water is never-ending. Freshwater resources are scarce and stress is accumulating on other alternatives. Therefore, new technologies and novel optimization methods are developed for the existing processes. Membrane-based processes are among the most efficient methods for water treatment. Yet, membranes suffer from severe operational problems, namely fouling and temperature polarization. These effects can harm the membrane’s permeability, permeate recovery, and lifetime. To mitigate such effects, membranes can be treated through two techniques: plasma treatment (a surface modification technique), and treatment through the use of plasmonic materials (surface and bulk modification). This article showcases plasma- and plasmonic-based treatments in the context of water desalination/purification. It aims to offer a comprehensive review of the current developments in membrane-based water treatment technologies along with suggested directions to enhance its overall efficiency through careful selection of material and system design. Moreover, basic guidelines and strategies are outlined on the different membrane modification techniques to evaluate its prerequisites. Besides, we discuss the challenges and future developments about these membrane modification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lou J, Liu Y, Wang Z, Zhao D, Song C, Wu J, Dasgupta N, Zhang W, Zhang D, Tao P, et al. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Applied Materials & Interfaces, 2016, 8(23): 14628–14636

    Article  CAS  Google Scholar 

  2. Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Al-Hinai H, Drioli E. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98

    Article  CAS  Google Scholar 

  3. Chen X, Yip N Y. Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis. Environmental Science & Technology, 2018, 52(4): 2242–2250

    Article  CAS  Google Scholar 

  4. Jones E, Qadir M, van Vliet M T H, Smakhtin V, Kang S. The state of desalination and brine production: a global outlook. Science of the Total Environment, 2019, 657: 1343–1356

    Article  CAS  PubMed  Google Scholar 

  5. Ghaffour N, Soukane S, Lee J G, Kim Y, Alpatova A. Membrane distillation hybrids for water production and energy efficiency enhancement: a critical review. Applied Energy, 2019, 254: 113698

    Article  CAS  Google Scholar 

  6. Filloux E, Wang J, Pidou M, Gernjak W, Yuan Z. Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. Journal of Membrane Science, 2015, 495: 276–283

    Article  CAS  Google Scholar 

  7. Guo W, Ngo H H, Li J. A mini-review on membrane fouling. Bioresource Technology, 2012, 122: 27–34

    Article  CAS  PubMed  Google Scholar 

  8. Lee S, Lee C H. Effect of operating conditions on CaSO4 scale formation mechanism in nanofiltration for water softening. Water Research, 2000, 34(15): 3854–3866

    Article  CAS  Google Scholar 

  9. Tang S, Wang Z, Wu Z, Zhou Q. Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment. Journal of Hazardous Materials, 2010, 178(1–3): 377–384

    CAS  PubMed  Google Scholar 

  10. Xu P, Bellona C, Drewes J E. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations. Journal of Membrane Science, 2010, 353(1–2): 111–121

    Article  CAS  Google Scholar 

  11. Yiantsios S G, Karabelas A J. The effect of colloid stability on membrane fouling. Desalination, 1998, 118(1–3): 143–152

    Article  CAS  Google Scholar 

  12. Martínez-Díez L, Vazquez-Gonzalez M I. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 1999, 156(2): 265–273

    Article  Google Scholar 

  13. Wang P, Chung T S. Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. Journal of Membrane Science, 2015, 474: 39–56

    Article  CAS  Google Scholar 

  14. Martinez-Diez L, Vázquez-González M I. Effects of polarization on mass transport through hydrophobic porous membranes. Industrial & Engineering Chemistry Research, 1998, 37(10): 4128–4135

    Article  CAS  Google Scholar 

  15. Gao W, Liang H, Ma J, Han M, Chen Z, Han Z, Li G. Membrane fouling control in ultrafiltration technology for drinking water production: a review. Desalination, 2011, 272(1–3): 1–8

    Article  CAS  Google Scholar 

  16. Razaqpur A G, Wang Y, Liao X, Liao Y, Wang R. Progress of photothermal membrane distillation for decentralized desalination: a review. Water Research, 2021, 201: 117299

    Article  CAS  PubMed  Google Scholar 

  17. Madalosso H B, Machado R, Hotza D, Marangoni C. Membrane surface modification by electrospinning, coating, and plasma for membrane distillation applications: a state-of-the-art review. Advanced Engineering Materials, 2021, 23(6): 2001456

    Article  CAS  Google Scholar 

  18. Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41: 269–284

    Article  CAS  Google Scholar 

  19. Mansour S, Giwa A, Hasan S W. Novel graphene nanoplatelets-coated polyethylene membrane for the treatment of reject brine by pilot-scale direct contact membrane distillation: an optimization study. Desalination, 2018, 441: 9–20

    Article  CAS  Google Scholar 

  20. Kang G, Cao Y. Application and modification of poly(vinylidenefluoride) (PVDF) membranes—a review. Journal of Membrane Science, 2014, 463: 145–165

    Article  CAS  Google Scholar 

  21. Himma N F, Prasetya N, Anisah S, Wenten I G. Superhydrophobic membrane: progress in preparation and its separation properties. Reviews in Chemical Engineering, 2019, 35(2): 211–238

    Article  Google Scholar 

  22. Cui Z, Zhang Y, Li X, Wang X, Drioli E, Wang Z, Zhao S. Optimization of novel composite membranes for water and mineral recovery by vacuum membrane distillation. Desalination, 2018, 440: 39–47

    Article  CAS  Google Scholar 

  23. Pedram S, Mortaheb H R, Arefi-Khonsari F. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation. Environmental Technology, 2018, 39(2): 157–171

    Article  CAS  PubMed  Google Scholar 

  24. Yang C, Tian M, **e Y, Li X M, Zhao B, He T, Liu J. Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 2015, 482: 25–32

    Article  CAS  Google Scholar 

  25. Ekanayake U G M, Barclay M, Seo D H, Park M J, MacLeod J, O’Mullane A P, Motta N, Shon H K, Ostrikov K. Utilization of plasma in water desalination and purification. Desalination, 2021, 500: 114903

    Article  CAS  Google Scholar 

  26. Zarshenas K, Raisi A, Aroujalian A. Surface modification of polyamide composite membranes by corona air plasma for gas separation applications. RSC Advances, 2015, 5(25): 19760–19772

    Article  CAS  Google Scholar 

  27. Khulbe K C, Feng C, Matsuura T. The art of surface modification of synthetic polymeric membranes. Journal of Applied Polymer Science, 2010, 115(2): 855–895

    Article  CAS  Google Scholar 

  28. Kim E S, Yu Q, Deng B. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling. Applied Surface Science, 2011, 257(23): 9863–9871

    Article  CAS  Google Scholar 

  29. Lai J Y, Chao Y C. Plasma-modified nylon 4 membranes for reverse osmosis desalination. Journal of Applied Polymer Science, 1990, 39(1112): 2293–2303

    Article  CAS  Google Scholar 

  30. Ohland A L, Salim V M M, Borges C P. Plasma functionalized hydroxyapatite incorporated in membranes for improved performance of osmotic processes. Desalination, 2019, 452: 87–93

    Article  CAS  Google Scholar 

  31. Dumée L F, Alglave H, Chaffraix T, Lin B, Magniez K, Schütz J. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation. Applied Surface Science, 2016, 363: 273–285

    Article  Google Scholar 

  32. Zhao Z, Shi S, Cao H, Li Y. Effect of plasma treatment on the surface properties and antifouling performance of homogeneous anion exchange membrane. Desalination and Water Treatment, 2017, 89: 77–86

    Article  CAS  Google Scholar 

  33. Fu Y, Wang G, Ming X, Liu X, Hou B, Mei T, Li J, Wang J, Wang X. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation. Carbon, 2018, 130: 250–256

    Article  CAS  Google Scholar 

  34. Kong W, Wang G, Zhang M, Duan X, Hu J, Duan X. Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity. Desalination, 2019, 459: 1–9

    Article  CAS  Google Scholar 

  35. De Oliveira Barauna J B F, Pereira C S, Gonçalves I A, De Oliveira Vitoriano J, Junior C A. Sodium chloride crystallization by electric discharge in brine. Materials Research, 2017, 20(suppl 2): 215–220

    Article  Google Scholar 

  36. Ekanayake U G M, Seo D H, Faershteyn K, O’Mullane A P, Shon H, MacLeod J, Golberg D, Ostrikov K. Atmospheric-pressure plasma seawater desalination: clean energy, agriculture, and resource recovery nexus for a blue planet. Sustainable Materials and Technologies, 2020, 25: e00181

    Article  CAS  Google Scholar 

  37. Kruithof J C, Kamp P C, Martijn B J. UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection. Ozone Science and Engineering, 2007, 29(4): 273–280

    Article  CAS  Google Scholar 

  38. Johnson D C, Bzdek J P, Fahrenbruck C R, Chandler J C, Bisha B, Goodridge L D, Hybertson B M. An innovative non-thermal plasma reactor to eliminate microorganisms in water. Desalination and Water Treatment, 2016, 57(18): 8097–8108

    Article  CAS  Google Scholar 

  39. Ulbin-Figlewicz N, Jarmoluk A, Marycz K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Annals of Microbiology, 2015, 65(3): 1537–1546

    Article  CAS  PubMed  Google Scholar 

  40. Daer S, Kharraz J, Giwa A, Hasan S W. Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination, 2015, 367: 37–48

    Article  CAS  Google Scholar 

  41. Kallem P, Othman I, Ouda M, Hasan S W, AlNashef I, Banat F. Polyethersulfone hybrid ultrafiltration membranes fabricated with polydopamine modified ZnFe2O4 nonocomposites: applications in humic acid removal and oil/water emulsion separation. Process Safety and Environmental Protection, 2021, 148: 813–824

    Article  CAS  Google Scholar 

  42. Alenazi N A, Hussein M A, Alamry K A, Asiri A M. Modified polyether-sulfone membrane: a mini review. Designed Monomers and Polymers, 2017, 20(1): 532–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Van der Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: a review. Journal of Applied Polymer Science, 2009, 114(1): 630–642

    Article  CAS  Google Scholar 

  44. Abdulkarim E, Ibrahim Y, Hasan S, Naddeo V, Banat F. Novel polyethersulfone (PES) alpha-zirconium phosphate (α-ZrP) ion exchange mixed matrix membranes for effective removal of heavy metals from wastewater. PES, 10: 0 International Conference on Environmental Science and Technology 2019

  45. Seh Z W, Liu S, Low M, Zhang S Y, Liu Z, Mlayah A, Han M Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314

    Article  CAS  PubMed  Google Scholar 

  46. Zhu L, Gao M, Peh C K N, Ho G W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343

    Article  CAS  Google Scholar 

  47. ** X, Li Y, Li W, Zheng Y, Fan Z, Han X, Wang W, Lin T, Zhu Z. Nanomaterial design for efficient solar-driven steam generation. ACS Applied Energy Materials, 2019, 2(9): 6112–6126

    Article  CAS  Google Scholar 

  48. Gao M, Zhu L, Peh C K, Ho G W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science, 2019, 12(3): 841–864

    Article  CAS  Google Scholar 

  49. Jun Y S, Wu X, Ghim D, Jiang Q, Cao S, Singamaneni S. Photothermal membrane water treatment for two worlds. Accounts of Chemical Research, 2019, 52(5): 1215–1225

    Article  CAS  PubMed  Google Scholar 

  50. Elsheikh A H, Sharshir S W, Ahmed Ali M K, Shaibo J, Edreis E M A, Abdelhamid T, Du C, Haiou Z. Thin film technology for solar steam generation: a new dawn. Solar Energy, 2019, 177: 561–575

    Article  CAS  Google Scholar 

  51. Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science. Nano, 2018, 5(5): 1078–1089

    Article  CAS  Google Scholar 

  52. Said I A, Wang S, Li Q. Field demonstration of a nanophotonics-enabled solar membrane distillation reactor for desalination. Industrial & Engineering Chemistry Research, 2019, 58(40): 18829–18835

    Article  CAS  Google Scholar 

  53. Rice D, Ghadimi S J, Barrios A C, Henry S, Walker W S, Li Q, Perreault F. Scaling resistance in nanophotonics-enabled solar membrane distillation. Environmental Science & Technology, 2020, 54(4): 2548–2555

    Article  CAS  Google Scholar 

  54. Zuo K, Wang W, Deshmukh A, Jia S, Guo H, **n R, Elimelech M, Ajayan P M, Lou J, Li Q. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. Nature Nanotechnology, 2020, 15(12): 1025–1032

    Article  CAS  PubMed  Google Scholar 

  55. Elizalde C N B, Al-Gharabli S, Kujawa J, Mavukkandy M, Hasan S W, Arafat H A. Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. Separation and Purification Technology, 2018, 190: 68–76

    Article  CAS  Google Scholar 

  56. Zhang Y, Li K, Liu L, Wang K, **ang J, Hou D, Wang J. Titanium nitride nanoparticle embedded membrane for photothermal membrane distillation. Chemosphere, 2020, 256: 127053

    Article  CAS  PubMed  Google Scholar 

  57. Giwa A, Hasan S W. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Separation and Purification Technology, 2020, 241: 116735

    Article  CAS  Google Scholar 

  58. Zhang Q, Xu W, Wang X. Carbon nanocomposites with high photothermal conversion efficiency. Science China Materials, 2018, 61(7): 905–914

    Article  CAS  Google Scholar 

  59. Zhang C, Liang H, Xu Z, Wang Z. Harnessing solar-driven photothermal effect toward the water-energy nexus. Advanced Science, 2019, 6(18): 1900883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang F, Huang J, Deng L, Zhang Y, Dang G, Shao L. Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation. Frontiers of Chemical Science and Engineering, 2022, 16(5): 614–633

    Article  CAS  Google Scholar 

  61. Adamovich I, Agarwal S, Ahedo E, Alves L L, Baalrud S, Babaeva N, Bogaerts A, Bourdon A, Bruggeman P J, Canal C, et al. The 2022 plasma roadmap: low temperature plasma science and technology. Journal of Physics. D, Applied Physics, 2022, 55(37): 373001

    Article  Google Scholar 

  62. Zhou R, Zhou R, Prasad K, Fang Z, Speight R, Bazaka K, Ostrikov K. Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018, 20(23): 5276–5284

    Article  CAS  Google Scholar 

  63. Kogelschatz U. Atmospheric-pressure plasma technology. Plasma Physics and Controlled Fusion, 2004, 46(12B): B63–B75

    Article  CAS  Google Scholar 

  64. Mesbah A, Bonzanini A D, Graves D B. Learning-based control: applications in treatment of complex substrates using non-equilibrium plasmas

  65. Bryjak M, Gancarz I, Smolinska K. Plasma nanostructuring of porous polymer membranes. Advances in Colloid and Interface Science, 2010, 161(1–2): 2–9

    Article  CAS  PubMed  Google Scholar 

  66. Wang J, Chen X, Reis R, Chen Z, Milne N, Winther-Jensen B, Kong L, Dumée L. Plasma modification and synthesis of membrane materials—a mechanistic review. Membranes (Basel), 2018, 8(3): 56

    Article  CAS  PubMed  Google Scholar 

  67. Bryjak M, Gancarz I, Poniak G, Tylus W. Modification of polysulfone membranes 4. Ammonia plasma treatment. European Polymer Journal, 2002, 38(4): 717–726

    CAS  Google Scholar 

  68. Pal D, Neogi S, De S. Improved antifouling characteristics of acrylonitrile co-polymer membrane by low temperature pulsed ammonia plasma in the treatment of oil-water emulsion. Vacuum, 2016, 131: 293–304

    Article  CAS  Google Scholar 

  69. Jaleh B, Parvin P, Wanichapichart P, Saffar A P, Reyhani A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Applied Surface Science, 2010, 257(5): 1655–1659

    Article  CAS  Google Scholar 

  70. Tompkins B D, Dennison J M, Fisher E R H. O2 plasma modification of track-etched polymer membranes for increased wettability and improved performance. Journal of Membrane Science, 2013, 428: 576–588

    Article  CAS  Google Scholar 

  71. Yu H Y, He X C, Liu L Q, Gu J S, Wei X W. Surface modification of poly(propylene) microporous membrane to improve its antifouling characteristics in an SMBR: O2 plasma treatment. Plasma Processes and Polymers, 2008, 5(1): 84–91

    Article  CAS  Google Scholar 

  72. Wavhal D S, Fisher E R. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination, 2005, 172(2): 189–205

    Article  CAS  Google Scholar 

  73. Wavhal D S, Fisher E R. Modification of porous poly(ether sulfone) membranes by low-temperature CO2-plasma treatment. Journal of Polymer Science. Part B, Polymer Physics, 2002, 40(21): 2473–2488

    Article  CAS  Google Scholar 

  74. Steen M L, Hymas L, Havey E D, Capps N E, Castner D G, Fisher E R. Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification. Journal of Membrane Science, 2001, 188(1): 97–114

    Article  CAS  Google Scholar 

  75. Steen M L, Jordan A C, Fisher E R. Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment. Journal of Membrane Science, 2002, 204(1–2): 341–357

    Article  CAS  Google Scholar 

  76. Yan M G, Liu L Q, Tang Z Q, Huang L, Li W, Zhou J, Gu J S, Wei X W, Yu H Y. Plasma surface modification of polypropylene microfiltration membranes and fouling by BSA dispersion. Chemical Engineering Journal, 2008, 145(2): 218–224

    Article  CAS  Google Scholar 

  77. Yu H Y, Hu M X, Xu Z K, Wang J L, Wang S Y. Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment. Separation and Purification Technology, 2005, 45(1): 8–15

    Article  Google Scholar 

  78. Kull K R, Steen M L, Fisher E R. Surface modification with nitrogen-containing plasmas to produce hydrophilic, low-fouling membranes. Journal of Membrane Science, 2005, 246(2): 203–215

    Article  CAS  Google Scholar 

  79. Kiamehr Z, Farokhi B, Hosseini S M. Development of a highly-permeable thin-film-based nanofiltration membrane by using surface treatment with air-Ar plasma. Korean Journal of Chemical Engineering, 2021, 38(1): 114–120

    Article  CAS  Google Scholar 

  80. Mohammed S, Hegab H M, Ou R, Liu S, Ma H, Chen X, Sridhar T, Wang H. Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes. Green Chemical Engineering, 2021, 2(1): 122–131

    Article  Google Scholar 

  81. Hegde C, Isloor A M, Padaki M, Wanichapichart P, Liangdeng Y. Synthesis and desalination performance of Ar+–N+ irradiated polysulfone based new NF membrane. Desalination, 2011, 265(1–3): 153–158

    Article  CAS  Google Scholar 

  82. Reis R, Dumée L F, Tardy B L, Dagastine R, Orbell J D, Schutz J A, Duke M C. Towards enhanced performance thin-film composite membranes via surface plasma modification. Scientific Reports, 2016, 6(1): 29206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reis R, Dumée L F, Merenda A, Orbell J D, Schütz J A, Duke M C. Plasma-induced physicochemical effects on a poly(amide) thin-film composite membrane. Desalination, 2017, 403: 3–11

    Article  CAS  Google Scholar 

  84. Safarpour M, Vatanpour V, Khataee A, Zarrabi H, Gholami P, Yekavalangi M E. High flux and fouling resistant reverse osmosis membrane modified with plasma treated natural zeolite. Desalination, 2017, 411: 89–100

    Article  CAS  Google Scholar 

  85. Varin K J, Lin N H, Cohen Y. Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. Journal of Membrane Science, 2013, 446: 472–481

    Article  CAS  Google Scholar 

  86. Reid K, Dixon M, Pelekani C, Jarvis K, Willis M, Yu Y. Biofouling control by hydrophilic surface modification of polypropylene feed spacers by plasma polymerisation. Desalination, 2014, 335(1): 108–118

    Article  CAS  Google Scholar 

  87. Zou L, Vidalis I, Steele D, Michelmore A, Low S P, Verberk J Q J C. Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. Journal of Membrane Science, 2011, 369(1–2): 420–428

    Article  CAS  Google Scholar 

  88. Reis R, Duke M, Merenda A, Winther-Jensen B, Puskar L, Tobin M J, Orbell J D, Dumée L F. Customizing the surface charge of thin-film composite membranes by surface plasma thin film polymerization. Journal of Membrane Science, 2017, 537: 1–10

    Article  CAS  Google Scholar 

  89. Hirsch U, Ruehl M, Teuscher N, Heilmann A. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis. Applied Surface Science, 2018, 436: 207–216

    Article  CAS  Google Scholar 

  90. Khongnakorn W, Bootluck W, Jutaporn P. Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling. Journal of Water Process Engineering, 2020, 38: 101633

    Article  Google Scholar 

  91. Gryta M. Application of polypropylene membranes hydrophilized by plasma for water desalination by membrane distillation. Desalination, 2021, 515: 115187

    Article  CAS  Google Scholar 

  92. Butrón-García M I, Jofre-Reche J A, Martín-Martínez J M. Use of statistical design of experiments in the optimization of Ar-O2 low-pressure plasma treatment conditions of polydimethylsiloxane (PDMS) for increasing polarity and adhesion, and inhibiting hydrophobic recovery. Applied Surface Science, 2015, 332: 1–11

    Article  Google Scholar 

  93. **ao Z, Zheng R, Liu Y, He H, Yuan X, Ji Y, Li D, Yin H, Zhang Y, Li X M, He T. Slippery for scaling resistance in membrane distillation: a novel porous micropillared superhydrophobic surface. Water Research, 2019, 155: 152–161

    Article  CAS  PubMed  Google Scholar 

  94. Lai C L, Liou R M, Chen S H, Huang G W, Lee K R. Preparation and characterization of plasma-modified PTFE membrane and its application in direct contact membrane distillation. Desalination, 2011, 267(2–3): 184–192

    Article  CAS  Google Scholar 

  95. Kong Y, Lin X, Wu Y, Chen J, Xu J. Plasma polymerization of octafluorocyclobutane and hydrophobic microporous composite membranes for membrane distillation. Journal of Applied Polymer Science, 1992, 46(2): 191–199

    Article  CAS  Google Scholar 

  96. Wei X, Zhao B, Li X M, Wang Z, He B Q, He T, Jiang B. CF4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation. Journal of Membrane Science, 2012, 407–408: 164–175

    Article  Google Scholar 

  97. Yang C, Li X M, Gilron J, Kong D, Yin Y, Oren Y, Linder C, He T. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. Journal of Membrane Science, 2014, 456: 155–161

    Article  CAS  Google Scholar 

  98. Tian M, Yin Y, Yang C, Zhao B, Song J, Liu J, Li X M, He T. CF4 plasma modified highly interconnective porous polysulfone membranes for direct contact membrane distillation (DCMD). Desalination, 2015, 369: 105–114

    Article  CAS  Google Scholar 

  99. Woo Y C, Chen Y, Ti**g L D, Phuntsho S, He T, Choi J S, Kim S H, Shon H K. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. Journal of Membrane Science, 2017, 529: 234–242

    Article  CAS  Google Scholar 

  100. Liu L, Shen F, Chen X, Luo J, Su Y, Wu H, Wan Y. A novel plasma-induced surface hydrophobization strategy for membrane distillation: etching, dip** and grafting. Journal of Membrane Science, 2016, 499: 544–554

    Article  CAS  Google Scholar 

  101. Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nature Materials, 2015, 14(6): 567–576

    Article  CAS  PubMed  Google Scholar 

  102. Lin Y, Xu H, Shan X, Di Y, Zhao A, Hu Y, Gan Z. Solar steam generation based on the photothermal effect: from designs to applications, and beyond. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(33): 19203–19227

    Article  CAS  Google Scholar 

  103. Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204

    Article  CAS  PubMed  Google Scholar 

  104. Boriskina S V, Ghasemi H, Chen G. Plasmonic materials for energy: from physics to applications. Materials Today, 2013, 16(10): 375–386

    Article  CAS  Google Scholar 

  105. Gong B, Yang H, Wu S, **ong G, Yan J, Cen K, Bo Z, Ostrikov K. Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency. Nano-Micro Letters, 2019, 11(1): 1–14

    Article  Google Scholar 

  106. Chen M, He Y, Ye Q, Wang X, Hu Y. Shape-dependent solar thermal conversion properties of plasmonic Au nanoparticles under different light filter conditions. Solar Energy, 2019, 182: 340–347

    Article  CAS  Google Scholar 

  107. Rider A E, Ostrikov K, Furman S A. Plasmas meet plasmonics: everything old is new again. European Physical Journal D, 2012, 66(9): 1–19

    Article  Google Scholar 

  108. Yang B, Li C, Wang Z, Dai Q. Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications. Advanced Materials, 2022, 2107351(26): 1–31

    Google Scholar 

  109. Zoubos H, Koutsokeras L E, Anagnostopoulos D F, Lidorikis E, Kalogirou S A, Wildes A R, Kelires P C, Patsalas P. Broadband optical absorption of amorphous carbon/Ag nanocomposite films and its potential for solar harvesting applications. Solar Energy Materials and Solar Cells, 2013, 117: 350–356

    Article  CAS  Google Scholar 

  110. Du M, Tang G H. Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Solar Energy, 2016, 137: 393–400

    Article  CAS  Google Scholar 

  111. Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S, Zhu J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398

    Article  CAS  Google Scholar 

  112. Naik G, Kim J, Kinsey N, eds. Boltasseva A. Chapter 6—Alternative Plasmonic Materials. North-Holland: Handbook of Surface Science, 2014, 189–221

    Google Scholar 

  113. Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Advanced Materials, 2013, 25(24): 3264–3294

    Article  CAS  PubMed  Google Scholar 

  114. Liu H, Chen C, Wen H, Guo R, Williams N A, Wang B, Chen F, Hu L. Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(39): 18839–18846

    Article  CAS  Google Scholar 

  115. Wang J, Li Y, Deng L, Wei N, Weng Y, Dong S, Qi D, Qiu J, Chen X, Wu T. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Advanced Materials, 2017, 29(3): 1603730

    Article  Google Scholar 

  116. Fuzil N S, Othman N H, Alias N H, Marpani F, Othman Mohd H D, Ismail A F, Lau W J, Li K, Kusworo T D, Ichinose I, et al. A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production. Desalination, 2021, 517: 115259

    Article  CAS  Google Scholar 

  117. Tao F, Zhang Y, Yin K, Cao S, Chang X, Lei Y, Wang D, Fan R, Dong L, Yin Y, et al. A plasmonic interfacial evaporator for high-efficiency solar vapor generation. Sustainable Energy & Fuels, 2018, 2(12): 2762–2769

    Article  CAS  Google Scholar 

  118. Xu J, Xu F, Qian M, Li Z, Sun P, Hong Z, Huang F. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy, 2018, 53: 425–431

    Article  CAS  Google Scholar 

  119. Tao F, Zhang Y, Zhang F, Wang K, Chang X, An Y, Dong L, Yin Y. From CdS to Cu7S4 nanorods via a cation exchange route and their applications: environmental pollution removal, photothermal conversion and light-induced water evaporation. ChemistrySelect, 2017, 2(10): 3039–3048

    Article  CAS  Google Scholar 

  120. Li X, Wang D, Zhang Y, Liu L, Wang W. Surface-ligand protected reduction on plasmonic tuning of one-dimensional MoO3−x nanobelts for solar steam generation. Nano Research, 2020, 13(11): 3025–3032

    Article  CAS  Google Scholar 

  121. Ishii S, Chen K, Sugavaneshwar R P, Okuyama H, Dao T D, Shinde S L, Kaur M, Kitajima M, Nagao T. Efficient absorption of sunlight using resonant nanoparticles for solar heat applications. Materials Nanoarchitectonics, 2018, 241–253

  122. Lu Q, Yang Y, Feng J, Wang X. Oxygen-defected molybdenum oxides hierarchical nanostructure constructed by atomic-level thickness nanosheets as an efficient absorber for solar steam generation. Solar RRL, 2019, 3(2): 1–8

    Article  Google Scholar 

  123. Ansori B, Gogotsi Y. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications. Berlin: Springer, 2019, 13–15

    Book  Google Scholar 

  124. Lei J C, Zhang X, Zhou Z. Recent advances in MXene: preparation, properties, and applications. Frontiers of Physics, 2015, 10(3): 276–286

    Article  Google Scholar 

  125. Zhang Q, Yi G, Fu Z, Yu H, Chen S, Quan X. Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano, 2019, 13(11): 13196–13207

    Article  CAS  PubMed  Google Scholar 

  126. Chang C, Yang C, Liu Y, Tao P, Song C, Shang W, Wu J, Deng T. Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Applied Materials & Interfaces, 2016, 8(35): 23412–23418

    Article  CAS  Google Scholar 

  127. Wang X, He Y, Liu X, Shi L, Zhu J. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy, 2017, 157: 35–46

    Article  CAS  Google Scholar 

  128. Zhu L, Gao M, Peh C K N, Ho G W. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy, 2019, 57: 507–518

    Article  CAS  Google Scholar 

  129. Lalisse A, Tessier G, Plain J, Baffou G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. Journal of Physical Chemistry C, 2015, 119(45): 25518–25528

    Article  CAS  Google Scholar 

  130. Leong K Y, Ong H C, Amer N H, Norazrina M J, Risby M S, Ku Ahmad K Z. An overview on current application of nanofluids in solar thermal collector and its challenges. Renewable & Sustainable Energy Reviews, 2016, 53: 1092–1105

    Article  CAS  Google Scholar 

  131. Zhang H, Chen H J, Du X, Wen D. Photothermal conversion characteristics of gold nanoparticle dispersions. Solar Energy, 2014, 100: 141–147

    Article  CAS  Google Scholar 

  132. Amjad M, Raza G, **n Y, Pervaiz S, Xu J, Du X, Wen D. Volumetric solar heating and steam generation via gold nanofluids. Applied Energy, 2017, 206: 393–400

    Article  CAS  Google Scholar 

  133. Chen M, He Y, Zhu J, Shuai Y, Jiang B, Huang Y. An experimental investigation on sunlight absorption characteristics of silver nanofluids. Solar Energy, 2015, 115: 85–94

    Article  CAS  Google Scholar 

  134. Zhang Y, Liu L, Li K, Hou D, Wang J. Enhancement of energy utilization using nanofluid in solar powered membrane distillation. Chemosphere, 2018, 212: 554–562

    Article  CAS  PubMed  Google Scholar 

  135. Zeng J, Xuan Y. Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Applied Energy, 2018, 212: 809–819

    Article  CAS  Google Scholar 

  136. Zhu G, Wang L, Bing N, **e H, Yu W. Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons. Energy, 2019, 183: 747–755

    Article  CAS  Google Scholar 

  137. Mehrali M, Ghatkesar M K, Pecnik R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids. Applied Energy, 2018, 224: 103–115

    Article  CAS  Google Scholar 

  138. Xuan Y, Duan H, Li Q. Enhancement of solar energy absorption using a plasmonic nanofluid based on TiO2/Ag composite nanoparticles. RSC Advances, 2014, 4(31): 16206–16213

    Article  CAS  Google Scholar 

  139. Wang L, Zhu G, Wang M, Yu W, Zeng J, Yu X, **e H, Li Q. Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion. Solar Energy, 2019, 184: 240–248

    Article  CAS  Google Scholar 

  140. Lee B J, Park K, Walsh T, Xu L. Radiative heat transfer analysis in plasmonic nanofluids for direct solar thermal absorption. Journal of Solar Energy Engineering, 2012, 134(2): 021009

    Article  Google Scholar 

  141. Chen N, Ma H, Li Y, Cheng J, Zhang C, Wu D, Zhu H. Complementary optical absorption and enhanced solar thermal conversion of CuO-ATO nanofluids. Solar Energy Materials and Solar Cells, 2017, 162: 83–92

    Article  CAS  Google Scholar 

  142. Menbari A, Alemrajabi A A, Ghayeb Y. Experimental investigation of stability and extinction coefficient of Al2O3-CuO binary nanoparticles dispersed in ethylene glycol-water mixture for low-temperature direct absorption solar collectors. Energy Conversion and Management, 2016, 108: 501–510

    Article  CAS  Google Scholar 

  143. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. International Journal of Heat and Mass Transfer, 2008, 51(5–6): 1431–1438

    Article  CAS  Google Scholar 

  144. Jeon J, Park S, Lee B J. Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonic nanofluid. Solar Energy, 2016, 132: 247–256

    Article  CAS  Google Scholar 

  145. Tao F, Green M, Garcia A V, **ao T, Van Tran A T, Zhang Y, Yin Y, Chen X. Recent progress of nanostructured interfacial solar vapor generators. Applied Materials Today, 2019, 17: 45–84

    Article  Google Scholar 

  146. Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J. Nanoparticles heat through light localization. Nano Letters, 2014, 14(8): 4640–4645

    Article  CAS  PubMed  Google Scholar 

  147. Wu S L, Chen H, Wang H L, Chen X, Yang H C, Darling S B. Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science. Water Research & Technology, 2021, 7(1): 24–39

    Article  CAS  Google Scholar 

  148. Politano A, Di Profio G, Fontananova E, Sanna V, Cupolillo A, Curcio E. Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes. Desalination, 2019, 451: 192–199

    Article  CAS  Google Scholar 

  149. Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano, 2017, 11(4): 3752–3759

    Article  CAS  PubMed  Google Scholar 

  150. Hong S, Sycks D, Chan H F, Lin S, Lopez G P, Guilak F, Leong K W, Zhao X. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Advanced Materials, 2015, 27(27): 4035–4040

    Article  CAS  PubMed  Google Scholar 

  151. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today, 2013, 16(12): 496–504

    Article  CAS  Google Scholar 

  152. Muth J T, Vogt D M, Truby R L, Mengüç Y, Kolesky D B, Wood R J, Lewis J A. Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials, 2014, 26(36): 6307–6312

    Article  CAS  PubMed  Google Scholar 

  153. Kiriarachchi H D, Awad F S, Hassan A A, Bobb J A, Lin A, El-Shall M S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale, 2018, 10(39): 18531–18539

    Article  CAS  PubMed  Google Scholar 

  154. Ghim D, Wu X, Suazo M, Jun Y S. Achieving maximum recovery of latent heat in photothermally driven multi-layer stacked membrane distillation. Nano Energy, 2021, 80: 105444

    Article  CAS  Google Scholar 

  155. Bae K, Kang G, Cho S K, Park W, Kim K, Padilla W J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nature Communications, 2015, 6(1): 10103

    Article  CAS  PubMed  Google Scholar 

  156. Chen M, Wu Y, Song W, Mo Y, Lin X, He Q, Guo B. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation. Nanoscale, 2018, 10(13): 6186–6193

    Article  CAS  PubMed  Google Scholar 

  157. Liu Z, Yang Z, Huang X, Xuan C, **e J, Fu H, Wu Q, Zhang J, Zhou X, Liu Y. High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination: via enhanced localized heating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 20044–20052

    Article  CAS  Google Scholar 

  158. Liu C, Huang J, Hsiung C E, Tian Y, Wang J, Han Y, Fratalocchi A. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Advanced Sustainable Systems, 2017, 1(1–2): 1600013

    Article  Google Scholar 

  159. Yang Y, Yang X, Fu L, Zou M, Cao A, Du Y, Yuan Q, Yan C H. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination. ACS Energy Letters, 2018, 3(5): 1165–1171

    Article  CAS  Google Scholar 

  160. Chen J, Feng J, Li Z, Xu P, Wang X, Yin W, Wang M, Ge X, Yin Y. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Letters, 2019, 19(1): 400–407

    Article  CAS  PubMed  Google Scholar 

  161. Avci A H, Santoro S, Politano A, Propato M, Micieli M, Aquino M, Wenjuan Z, Curcio E. Photothermal swee** gas membrane distillation and reverse electrodialysis for light-to-heat-to-power conversion. Chemical Engineering and Processing, 2021, 164: 108382

    Article  CAS  Google Scholar 

  162. Ye H, Li X, Deng L, Li P, Zhang T, Wang X, Hsiao B S. Silver nanoparticle-enabled photothermal nanofibrous membrane for light-driven membrane distillation. Industrial & Engineering Chemistry Research, 2019, 58(8): 3269–3281

    Article  CAS  Google Scholar 

  163. Wu D, Zhao C, Xu Y, Zhang X, Yang L, Zhang Y, Gao Z, Song Y Y. Modulating solar energy harvesting on TiO2 nanochannel membranes by plasmonic nanoparticle assembly for desalination of contaminated seawater. ACS Applied Nano Materials, 2020, 3(11): 10895–10904

    Article  CAS  Google Scholar 

  164. Lin Y, Chen Z, Fang L, Meng M, Liu Z, Di Y, Cai W, Huang S, Gan Z. Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation. Nanotechnology, 2018, 30(1): 015402

    Article  PubMed  Google Scholar 

  165. Zhang L, **ng J, Wen X, Chai J, Wang S, **ong Q. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale, 2017, 9(35): 12843–12849

    Article  CAS  PubMed  Google Scholar 

  166. Shang M, Li N, Zhang S, Zhao T, Zhang C, Liu C, Li H, Wang Z. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials, 2018, 1(1): 56–61

    Article  CAS  Google Scholar 

  167. Xu Z, Rao N, Tang C Y, Law W C. Seawater desalination by interfacial solar vapor generation method using plasmonic heating nanocomposites. Micromachines, 2020, 11(9): 867

    Article  PubMed  PubMed Central  Google Scholar 

  168. Guo Z, Ming X, Wang G, Hou B, Liu X, Mei T, Li J, Wang J, Wang X. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination. Semiconductor Science and Technology, 2018, 33(2): 25008

    Article  Google Scholar 

  169. Shi Y, Li R, Shi L, Ahmed E, ** Y, Wang P. A robust CuCr2O4/SiO2 composite photothermal material with underwater black property and extremely high thermal stability for solar-driven water evaporation. Advanced Sustainable Systems, 2018, 2: 1–11

    Google Scholar 

  170. Kaur M, Ishii S, Shinde S L, Nagao T. All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8523–8528

    Article  CAS  Google Scholar 

  171. Bian Y, Tang K, Xu Z, Ma J, Shen Y, Hao L, Chen X, Nie K, Li J, Ma T, et al. Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane. Journal of Materials Research, 2018, 33(22): 3857–3869

    Article  CAS  Google Scholar 

  172. Traver E, Karaballi R A, Monfared Y E, Daurie H, Gagnon G A, Dasog M. TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Applied Nano Materials, 2020, 3(3): 2787–2794

    Article  CAS  Google Scholar 

  173. Kaur M, Ishii S, Shinde S L, Nagao T. All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride. Optics InfoBase Conference Papers, 2018, Part F125-: 1–8

  174. Farid M U, Kharraz J A, Wang P, An A K. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane. Journal of Cleaner Production, 2020, 271: 122684

    Article  CAS  Google Scholar 

  175. Farid M U, Kharraz J A, An A K. Plasmonic titanium nitride nano-enabled membranes with high structural stability for efficient photothermal desalination. ACS Applied Materials & Interfaces, 2021, 13(3): 3805–3815

    Article  CAS  Google Scholar 

  176. Chala T F, Wu C M, Chou M H, Guo Z L. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Applied Materials & Interfaces, 2018, 10(34): 28955–28962

    Article  CAS  Google Scholar 

  177. Cheng X, Bai X, Yang J, Zhu X M, Wang J. Titanium oxynitride spheres with broad plasmon resonance for solar seawater desalination. ACS Applied Materials & Interfaces, 2022, 14(25): 28769–28780

    Article  CAS  Google Scholar 

  178. Li G, Law W C, Chan K C. Floating, highly efficient, and scalable graphene membranes for seawater desalination using solar energy. Green Chemistry, 2018, 20(16): 3689–3695

    Article  CAS  Google Scholar 

  179. Zhao J, Yang Y, Yang C, Tian Y, Han Y, Liu J, Yin X, Que W. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(33): 16196–16204

    Article  CAS  Google Scholar 

  180. Zha X J, Zhao X, Pu J H, Tang L S, Ke K, Bao R Y, Bai L, Liu Z Y, Yang M B, Yang W. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Applied Materials & Interfaces, 2019, 11(40): 36589–36597

    Article  CAS  Google Scholar 

  181. Wang L, Shang J, Yang G, Ma Y, Kou L, Liu D, Yin H, Hegh D, Razal J, Lei W. 2D higher-metal nitride nanosheets for solar steam generation. Small, 2022, 2201770(28): 2–9

    Google Scholar 

  182. Behera S, Kim C, Kim K. Solar steam generation and desalination using ultra-broadband absorption in plasmonic alumina nanowire haze structure-graphene oxide-gold nanoparticle composite. Langmuir, 2020, 36(42): 12494–12503

    Article  CAS  PubMed  Google Scholar 

  183. Liu Y, Lou J, Ni M, Song C, Wu J, Dasgupta N P, Tao P, Shang W, Deng T. Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 2016, 8(1): 772–779

    Article  CAS  Google Scholar 

  184. Huang J, He Y, Wang L, Huang Y, Jiang B. Bifunctional Au@TiO2 core-shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Conversion and Management, 2017, 132: 452–459

    Article  CAS  Google Scholar 

  185. Goharshadi K, Sajjadi S A, Goharshadi E K, Mehrkhah R. Highly efficient plasmonic wood/Ag/Pd photoabsorber in interfacial solar steam generation. Materials Research Bulletin, 2022, 154: 111916

    Article  CAS  Google Scholar 

  186. Zhu L, Li J, Zhong L, Zhang L, Zhou M, Chen H, Hou Y, Zheng Y. Excellent dual-photothermal freshwater collector with high performance in large-scale evaporation. Nano Energy, 2022, 100: 107441

    Article  CAS  Google Scholar 

  187. Gao M, Connor P K N, Ho G W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160

    Article  CAS  Google Scholar 

  188. Awad F S, Kiriarachchi H D, Abouzeid K M, Özgür Ü, El-Shall M S. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Applied Energy Materials, 2018, 1(3): 976–985

    Article  CAS  Google Scholar 

  189. Yi L, Ci S, Luo S, Shao P, Hou Y, Wen Z. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy, 2017, 41: 600–608

    Article  CAS  Google Scholar 

  190. Yang Y, Han Y, Zhao J, Que W. 2D/1D MXene/MWCNT hybrid membrane-based evaporator for solar desalination. Materials (Basel), 2022, 15(3): 1–7

    Article  Google Scholar 

  191. Chen J, Pei J, Zhao H. Effect of oxygen plasma treatment on the structure and mechanical properties of bilayer graphene studied by molecular dynamics simulation. Journal of Physical Chemistry C, 2021, 125(35): 19345–19352

    Article  CAS  Google Scholar 

  192. Montgomery D C. Design and Analysis of Experiments. 9th ed. United States: John Wiley & Sons, 2017

    Google Scholar 

  193. Lau W J, Gray S, Matsuura T, Emadzadeh D, Chen J P, Ismail A F. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Research, 2015, 80: 306–324

    Article  CAS  PubMed  Google Scholar 

  194. Marchetti P, Jimenez Solomon M F, Szekely G, Livingston A G. Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 2014, 114(21): 10735–10806

    Article  CAS  PubMed  Google Scholar 

  195. Zha S, Gusnawan P, Lin J, Zhang G, Liu N, Yu J. Integrating a novel TS-af-HFM NF process for portable treatment of oilfield produced water. Chemical Engineering Journal, 2017, 311: 203–208

    Article  CAS  Google Scholar 

  196. Harpale A, Chew H B. Hydrogen-plasma patterning of multilayer graphene: mechanisms and modeling. Carbon, 2017, 117: 82–91

    Article  CAS  Google Scholar 

  197. Liu L, **e D, Wu M, Yang X, Xu Z, Wang W, Bai X, Wang E. Controlled oxidative functionalization of monolayer graphene by water-vapor plasma etching. Carbon, 2012, 50(8): 3039–3044

    Article  CAS  Google Scholar 

  198. Huang L, Pei J, Jiang H, Hu X. Water desalination under one sun using graphene-based material modified PTFE membrane. Desalination, 2018, 442: 1–7

    Article  CAS  Google Scholar 

  199. Politano A, Argurio P, Di Profio G, Sanna V, Cupolillo A, Chakraborty S, Arafat H A, Curcio E. Photothermal membrane distillation for seawater desalination. Advanced Materials, 2017, 29(2): 1603504

    Article  Google Scholar 

  200. Tan Y Z, Wang H, Han L, Tanis-Kanbur M B, Pranav M V, Chew J W. Photothermal-enhanced and fouling-resistant membrane for solar-assisted membrane distillation. Journal of Membrane Science, 2018, 565: 254–265

    Article  CAS  Google Scholar 

  201. Hou B, Cui Z, Zhu X, Liu X, Wang G, Wang J, Mei T, Li J, Wang X. Functionalized carbon materials for efficient solar steam and electricity generation. Materials Chemistry and Physics, 2019, 222: 159–164

    Article  CAS  Google Scholar 

  202. Zuo G, Wang R. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. Journal of Membrane Science, 2013, 447: 26–35

    Article  CAS  Google Scholar 

  203. Reis R, Dumée L F, He L, She F, Orbell J D, Winther-Jensen B, Duke M C. Amine enrichment of thin-film composite membranes via low pressure plasma polymerization for antimicrobial adhesion. ACS Applied Materials & Interfaces, 2015, 7(27): 14644–14653

    Article  CAS  Google Scholar 

  204. Abdel-Wahed M S, Hefny M M, Abd-Elmaksoud S, El-Liethy M A, Kamel M A, El-Kalliny A S, Hamza I A. Removal of chemical and microbial water pollutants by cold plasma combined with Ag/TiO2-rGO nanoparticles. Scientific Reports, 2022, 12(1): 1–14

    Article  Google Scholar 

  205. Wu S, **ong G, Yang H, Gong B, Tian Y, Xu C, Wang Y, Fisher T, Yan J, Cen K, et al. Multifunctional solar waterways: plasma-enabled self-cleaning nanoarchitectures for energy-efficient desalination. Advanced Energy Materials, 2019, 9(30): 1–11

    Google Scholar 

  206. Khoo Y S, Lau W J, Liang Y Y, Karaman M, Gürsoy M, Lai G S, Ismail A F. Rapid and eco-friendly technique for surface modification of TFC RO membrane for improved filtration performance. Journal of Environmental Chemical Engineering, 2021, 9(3): 105227

    Article  CAS  Google Scholar 

  207. Liu F, Wang L, Li D, Liu Q, Deng B. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Advances, 2019, 9(61): 35417–35428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Center for Membranes and Advanced Water Technology (CMAT) at Khalifa University for the support (Award No. RC2-2018-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi W. Hasan.

Ethics declarations

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuhatab, F., Khalifa, O., Al Araj, H. et al. From plasma to plasmonics: toward sustainable and clean water production through membranes. Front. Chem. Sci. Eng. 17, 1809–1836 (2023). https://doi.org/10.1007/s11705-023-2339-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2339-3

Keywords

Navigation