Log in

Review on cellulose paper-based electrodes for sustainable batteries with high energy densities

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Powering the future, while maintaining strong socioeconomic growth and a cleaner environment, is going to be one of the biggest challenges faced by mankind nowadays. Thus, there is a transition from the use of fossil fuels to renewable energy sources. Cellulose, the main component of paper, represents a unique type of bio-based building blocks featuring exciting properties: low-cost, hierarchical fibrous structures, hydrophilicity, biocompatible, mechanical flexibility, and renewability, which make it perfect for use in paper-based sustainable energy storage devices. This review focuses on lithium-ion battery application of celluloses with cellulose at different scales, i.e., cellulose microfibers, and nanocellulose, and highlights the new trends in the field. Recent advances and approaches to construct high mass loading paper electrodes toward high energy density batteries are evaluated and the limitations of paper-based cathodes are discussed. This will stimulate the use of natural resources and thereby the development of renewable electric energy systems based on sustainable technologies with low environmental impacts and carbon footprints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li H, Zhang X, Zhao Z, Hu Z, Liu X, Yu G. Flexible sodium-ion based energy storage devices: recent progress and challenges. Energy Storage Materials, 2020, 26: 83–104

    Article  Google Scholar 

  2. Tao T, Lu S, Chen Y. A review of advanced flexible lithium-ion batteries. Advanced Materials Technologies, 2018, 3(9): 1700375

    Article  Google Scholar 

  3. Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G. Flexible energy-storage devices: design consideration and recent progress. Advanced Materials, 2014, 26(28): 4763–4782

    Article  CAS  PubMed  Google Scholar 

  4. Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-based flexible functional materials for emerging intelligent electronics. Advanced Materials, 2021, 33(28): e2000619

    Article  PubMed  Google Scholar 

  5. Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014, 7(4): 1307–1338

    Article  CAS  Google Scholar 

  6. Qian G, Liao X, Zhu Y, Pan F, Chen X, Yang Y. Designing flexible lithium-ion batteries by dtructural engineering. ACS Energy Letters, 2019, 4(3): 690–701

    Article  CAS  Google Scholar 

  7. Dühnen S, Betz J, Kolek M, Schmuch R, Winter M, Placke T. Toward green battery cells: perspective on materials and technologies. Small Methods, 2020, 4(7): 2000039

    Article  Google Scholar 

  8. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011, 4(9): 3243

    Article  CAS  Google Scholar 

  9. **e J, Lu Y C. A retrospective on lithium-ion batteries. Nature Communications, 2020, 11(1): 2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6(2): 123–134

    Article  CAS  Google Scholar 

  11. Lee S Y, Choi K H, Choi W S, Kwon Y H, Jung H R, Shin H C, Kim J Y. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy & Environmental Science, 2013, 6(8): 2414

    Article  CAS  Google Scholar 

  12. Foreman E, Zakri W, Hossein Sanatimoghaddam M, Modjtahedi A, Pathak S, Kashkooli A G, Garafolo N G, Farhad S. A review of inactive materials and components of flexible lithium-ion batteries. Advanced Sustainable Systems, 2017, 1(11): 1700061

    Article  Google Scholar 

  13. Dominko R, Gaberšček M, Drofenik J, Bele M, Jamnik J. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochimica Acta, 2003, 48(24): 3709–3716

    Article  CAS  Google Scholar 

  14. Song J, Zhou M, Yi R, Xu T, Gordin M L, Tang D, Yu Z, Regula M, Wang D. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Advanced Functional Materials, 2014, 24(37): 5904–5910

    Article  CAS  Google Scholar 

  15. Bauer W, Nötzel D. Rheological properties and stability of NMP based cathode slurries for lithium ion batteries. Ceramics International, 2014, 40(3): 4591–4598

    Article  CAS  Google Scholar 

  16. Susarla N, Ahmed S, Dees D W. Modeling and analysis of solvent removal during Li-ion battery electrode drying. Journal of Power Sources, 2018, 378: 660–670

    Article  CAS  Google Scholar 

  17. Li C C, Wang Y W. Binder distributions in water-based and organic-based LiCoO2 electrode sheets and their effects on cell performance. Journal of the Electrochemical Society, 2011, 158(12): A1361

    Article  CAS  Google Scholar 

  18. Ahmed S, Nelson P A, Gallagher K G, Dees D W. Energy impact of cathode drying and solvent recovery during lithiumion battery manufacturing. Journal of Power Sources, 2016, 322: 169–178

    Article  CAS  Google Scholar 

  19. ** S, Jiang Y, Ji H, Yu Y. Advanced 3D current collectors for lithium-based batteries. Advanced Materials, 2018, 30(48): e1802014

    Article  PubMed  Google Scholar 

  20. Zhu P, Gastol D, Marshall J, Sommerville R, Goodship V, Kendrick E. A review of current collectors for lithium-ion batteries. Journal of Power Sources, 2021, 485: 229321

    Article  CAS  Google Scholar 

  21. Hu H, Wu M. Heavy oil-derived carbon for energy storage applications. Journal of Materials Chemistry A, 2020, 8(15): 7066–7082

    Article  CAS  Google Scholar 

  22. Chen Z, Christensen L, Dahn J R. Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. Journal of the Electrochemical Society, 2003, 150(8): A1073

    Article  CAS  Google Scholar 

  23. Wu Q, Ha S, Prakash J, Dees D W, Lu W. Investigations on high energy lithium-ion batteries with aqueous binder. Electrochimica Acta, 2013, 114: 1–6

    Article  CAS  Google Scholar 

  24. Klemm D, Heublein B, Fink H P, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393

    Article  CAS  PubMed  Google Scholar 

  25. Li T, Chen C, Brozena A H, Zhu J Y, Xu L, Driemeier C, Dai J, Rojas O J, Isogai A, Wågberg L, Hu L. Develo** fibrillated cellulose as a sustainable technological material. Nature, 2021, 590(7844): 47–56

    Article  CAS  PubMed  Google Scholar 

  26. Habibi Y. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 2014, 43(5): 1519–1542

    Article  CAS  PubMed  Google Scholar 

  27. Thomas B, Raj M C, B A K, H R M, Joy J, Moores A, Drisko G L, Sanchez C. B A K, H R M, Joy J, Moores A, Drisko G L, Sanchez C. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical Reviews, 2018, 118(24): 11575–11625

    Article  CAS  PubMed  Google Scholar 

  28. Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn S J, Hu L. Structure-property-function relationships of natural and engineered wood. Nature Reviews. Materials, 2020, 5(9): 642–666

    Article  CAS  Google Scholar 

  29. Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D. Cellulose-based Li-ion batteries: a review. Cellulose, 2013, 20(4): 1523–1545

    Article  CAS  Google Scholar 

  30. Wang Z, Lee Y H, Kim S W, Seo J Y, Lee S Y, Nyholm L. Why cellulose-based electrochemical energy storage devices? Advanced Materials, 2021, 33(28): e2000892

    Article  PubMed  Google Scholar 

  31. Chen R, Yang Y, Huang Q, Ling H, Li X, Ren J, Zhang K, Sun R, Wang X. A multifunctional interface design on cellulose substrate enables high performance flexible all-solid-state supercapacitors. Energy Storage Materials, 2020, 32: 208–215

    Article  Google Scholar 

  32. Huang Q, Yang Y, Chen R, Wang X. High performance fully paper-based all-solid-state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxide-modified pulp fibers. EcoMat, 2021, 3(1): e12076

    Article  CAS  Google Scholar 

  33. Cao D, **ng Y, Tantratian K, Wang X, Ma Y, Mukhopadhyay A, Cheng Z, Zhang Q, Jiao Y, Chen L, Zhu H. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Advanced Materials, 2019, 31(14): e1807313

    Article  PubMed  Google Scholar 

  34. Wang Z, Pan R, Sun R, Edström K, Strømme M, Nyholm L. Nanocellulose structured paper-based lithium metal batteries. ACS Applied Energy Materials, 2018, 1(8): 4341–4350

    Article  CAS  Google Scholar 

  35. Zhan R, Wang X, Chen Z, Seh Z W, Wang L, Sun Y. Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Advanced Energy Materials, 2021, 11(35): 2101565

    Article  CAS  Google Scholar 

  36. Chen C, Hu L. Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Accounts of Chemical Research, 2018, 51(12): 3154–3165

    Article  CAS  PubMed  Google Scholar 

  37. Tayeb A H, Amini E, Ghasemi S, Tajvidi M. Cellulose nanomaterials-binding properties and applications: a review. Molecules, 2018, 23(10): 2684

    Article  PubMed  PubMed Central  Google Scholar 

  38. Porzio J, Scown C D. Life-cycle assessment considerations for batteries and battery materials. Advanced Energy Materials, 2021, 11(33): 2100771

    Article  CAS  Google Scholar 

  39. Wang Z, Tammela P, Zhang P, Strømme M, Nyholm L. Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole-nanocellulose electrodes. Journal of Materials Chemistry A, 2014, 2(21): 7711–7716

    Article  CAS  Google Scholar 

  40. Wang Z, Xu C, Tammela P, Huo J, Strømme M, Edström K, Gustafsson T, Nyholm L. Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3(27): 14109–14115

    Article  CAS  Google Scholar 

  41. Zhang Z, Li Y, Cui X, Guan S, Tu L, Tang H, Li Z, Li J. Understanding the advantageous features of bacterial cellulose-based separator in Li-S battery. Advanced Materials Interfaces, 2022, 10(1): 2201730

    Article  Google Scholar 

  42. Zhang Z, Yang Y, Guo W, Chang G, Li J. Synergistic capture and conversion of soluble polysulfides in Li–S batteries with composite freestanding carbonaceous interlayers. ACS Applied Materials & Interfaces, 2022, 14(7): 9231–9241

    Article  CAS  Google Scholar 

  43. Kim J H, Lee D, Lee Y H, Chen W, Lee S Y. Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Advanced Materials, 2019, 31(20): e1804826

    Article  PubMed  Google Scholar 

  44. Liu W, Liu K, Du H, Zheng T, Zhang N, Xu T, Pang B, Zhang X, Si C, Zhang K. Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Letters, 2022, 14(1): 104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun Z, Qu K, You Y, Huang Z, Liu S, Li J, Hu Q, Guo Z. Overview of cellulose-based flexible materials for supercapacitors. Journal of Materials Chemistry A, 2021, 9(12): 7278–7300

    Article  CAS  Google Scholar 

  46. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Advanced Materials, 2021, 33(48): e2101368

    Article  PubMed  Google Scholar 

  47. Chen W, Yu H, Lee S Y, Wei T, Li J, Fan Z. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47(8): 2837–2872

    Article  CAS  PubMed  Google Scholar 

  48. Zhu H, Luo W, Ciesielski P N, Fang Z, Zhu J Y, Henriksson G, Himmel M E, Hu L. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 2016, 116(16): 9305–9374

    Article  CAS  PubMed  Google Scholar 

  49. Wang S, Yu L, Wang S, Zhang L, Chen L, Xu X, Song Z, Liu H, Chen C. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nature Communications, 2022, 13(1): 3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abdul Khalil H P S, Bhat A H, Ireana Yusra A F. Green composites from sustainable cellulose nanofibrils: a review. Carbohydrate Polymers, 2012, 87(2): 963–979

    Article  CAS  Google Scholar 

  51. Zhang L, Liu Z, Cui G, Chen L. Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43: 136–164

    Article  CAS  Google Scholar 

  52. Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941–3994

    Article  CAS  PubMed  Google Scholar 

  53. Li Z, Chen C, **e H, Yao Y, Zhang X, Brozena A, Li J, Ding Y, Zhao X, Hong M, Qiao H, Smith L M, Pan X, Briber R, Shi S Q, Hu L. Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2021, 5(3): 235–244

    Article  Google Scholar 

  54. Su Z, Yang Y, Huang Q, Chen R, Ge W, Fang Z, Huang F, Wang X. Designed biomass materials for “green” electronics: a review of materials, fabrications, devices, and perspectives. Progress in Materials Science, 2022, 125: 100917

    Article  CAS  Google Scholar 

  55. Wang Z, Tammela P, Strømme M, Nyholm L. Cellulose-based supercapacitors: material and performance considerations. Advanced Energy Materials, 2017, 7(18): 1700130

    Article  Google Scholar 

  56. Lu H, Gui Y, Zheng L, Liu X. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Research International, 2013, 50(1): 121–128

    Article  CAS  Google Scholar 

  57. Turbak A F, Snyder F W, Sandberg K R. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science. Applied Polymer Symposium, 1983, 37: 815–827

    CAS  Google Scholar 

  58. Heidarian M, Mihranyan A, Stromme M, Ek R. Influence of water-cellulose binding energy on stability of acetylsalicylic acid. International Journal of Pharmaceutics, 2006, 323(1–2): 139–145

    Article  CAS  PubMed  Google Scholar 

  59. Omran A A B, Mohammed A, Sapuan S M, Ilyas R A, Asyraf M R M, Rahimian Koloor S S, Petru M. Micro- and nanocellulose in polymer composite materials: a review. Polymers, 2021, 13(2): 231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haldar D, Purkait M K. Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: a review on synthesis, applications and advancements. Carbohydrate Polymers, 2020, 250: 116937

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, Yu J, Liu H. Flexible electronics based on micro/nanostructured paper. Advanced Materials, 2018, 30(51): e1801588

    Article  PubMed  Google Scholar 

  62. Zhang Y Z, Wang Y, Cheng T, Lai W Y, Pang H, Huang W. Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chemical Society Reviews, 2015, 44(15): 5181–5199

    Article  CAS  PubMed  Google Scholar 

  63. Wang Z, Xu C, Tammela P, Zhang P, Edström K, Gustafsson T, Strømme M, Nyholm L. Conducting polymer paper-based cathodes for high-areal-capacity lithium-organic batteries. Energy Technology, 2015, 3(6): 563–569

    Article  CAS  Google Scholar 

  64. Zhou S, Nyholm L, Stromme M, Wang Z. Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Accounts of Chemical Research, 2019, 52(8): 2232–2243

    Article  CAS  PubMed  Google Scholar 

  65. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Nanocelluloses: a new family of nature-based materials. Angewandte Chemie International Edition, 2011, 50(24): 5438–5466

    Article  CAS  PubMed  Google Scholar 

  66. Wu Z Y, Liang H W, Chen L F, Hu B C, Yu S H. Bacterial cellulose: a robust platform for design of three dimensional carbon-based functional nanomaterials. Accounts of Chemical Research, 2016, 49(1): 96–105

    Article  CAS  PubMed  Google Scholar 

  67. Tripathi B, Srivastava N, Sharma K B, Zagorskiy D, Katiyar R S. MWNT/cellulose based nanocomposite electrodes for ultrafast flexible Li-ion battery. Macromolecular Symposia, 2017, 376(1): 1700042

    Article  Google Scholar 

  68. Du X, Zhang Z, Liu W, Deng Y. Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy, 2017, 35: 299–320

    Article  CAS  Google Scholar 

  69. Hu L, Choi J W, Yang Y, Jeong S, La Mantia F, Cui L F, Cui Y. Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21490–21494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nyström G, Razaq A, Strømme M, Nyholm L, Mihranyan A. Ultrafast all-polymer paper-based batteries. Nano Letters, 2009, 9(10): 3635–3639

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dong L, Xu C, Li Y, Huang Z H, Kang F, Yang Q H, Zhao X. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4(13): 4659–4685

    Article  CAS  Google Scholar 

  72. Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y. Paper-based electrodes for flexible energy storage devices. Advanced Science, 2017, 4(7): 1700107

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang Z, Carlsson D O, Tammela P, Hua K, Zhang P, Nyholm L, Strømme M. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano, 2015, 9(7): 7563–7571

    Article  CAS  PubMed  Google Scholar 

  74. Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z, Dai H, Hu L. Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy, 2015, 13: 346–354

    Article  CAS  Google Scholar 

  75. Tian W, VahidMohammadi A, Reid M S, Wang Z, Ouyang L, Erlandsson J, Pettersson T, Wågberg L, Beidaghi M, Hamedi M M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Advanced Materials, 2019, 31(41): e1902977

    Article  PubMed  Google Scholar 

  76. Kim H, Guccini V, Lu H, Salazar-Alvarez G, Lindbergh G, Cornell A. Lithium ion battery separators based on carboxylated cellulose nanofibers from wood. ACS Applied Energy Materials, 2018, 2(2): 1241–1250

    Article  Google Scholar 

  77. Jabbour L, Destro M, Chaussy D, Gerbaldi C, Penazzi N, Bodoardo S, Beneventi D. Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose, 2013, 20(1): 571–582

    Article  CAS  Google Scholar 

  78. Jabbour L, Destro M, Chaussy D, Gerbaldi C, Bodoardo S, Penazzi N, Beneventi D. Cellulose/graphite/carbon fibres composite electrodes for Li-ion batteries. Composites Science and Technology, 2013, 87: 232–239

    Article  CAS  Google Scholar 

  79. Jabbour L, Chaussy D, Beneventi D, Destro M, Penazzi N, Gerbaldi C. Use of paper-making techniques for the production of Li-ion paper-batteries. Nordic Pulp & Paper Research Journal, 2012, 27(2): 472–475

    Article  CAS  Google Scholar 

  80. Beneventi D, Chaussy D, Curtil D, Zolin L, Bruno E, Bongiovanni R, Destro M, Gerbaldi C, Penazzi N, Tapin-Lingua S. Pilot-scale elaboration of graphite/microfibrillated cellulose anodes for Li-ion batteries by spray deposition on a forming paper sheet. Chemical Engineering Journal, 2014, 243: 372–379

    Article  CAS  Google Scholar 

  81. Zolin L, Destro M, Chaussy D, Penazzi N, Gerbaldi C, Beneventi D. Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. Journal of Materials Chemistry A, 2015, 3(28): 14894–14901

    Article  CAS  Google Scholar 

  82. Hu L, Wu H, La Mantia F, Yang Y, Cui Y. Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843–5848

    Article  CAS  PubMed  Google Scholar 

  83. Wang Z, Malti A, Ouyang L, Tu D, Tian W, Wågberg L, Hamedi M M. Copper-plated paper for high-performance lithium-ion batteries. Small, 2018, 14(48): e1803313

    Article  PubMed  Google Scholar 

  84. Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Letters, 2013, 13(7): 3093–3100

    Article  CAS  PubMed  Google Scholar 

  85. Zeng L, Chen S, Liu M, Cheng H M, Qiu L. Integrated paper-based flexible Li-ion batteries made by a rod coating method. ACS Applied Materials & Interfaces, 2019, 11(50): 46776–46782

    Article  CAS  Google Scholar 

  86. Kim J H, Lee Y H, Cho S J, Gwon J G, Cho H J, Jang M, Lee S Y, Lee S Y. Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy & Environmental Science, 2019, 12(1): 177–186

    Article  CAS  Google Scholar 

  87. Lu H, Behm M, Leijonmarck S, Lindbergh G, Cornell A. Flexible paper electrodes for Li-ion batteries usinglow smount of TEMPO-oxidized cellulose nanofibrils as binder. ACS Applied Materials & Interfaces, 2016, 8(28): 18097–18106

    Article  CAS  Google Scholar 

  88. Wang Y, He Z Y, Wang Y X, Fan C, Liu C R, Peng Q L, Chen J J, Feng Z S. Preparation and characterization of flexible lithium iron phosphate/graphene/cellulose electrode for lithium ion batteries. Journal of Colloid and Interface Science, 2018, 512: 398–403

    Article  CAS  PubMed  Google Scholar 

  89. Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D. Microfibrillated cellulose-graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. Journal of Materials Chemistry, 2010, 20(35): 7344

    Article  CAS  Google Scholar 

  90. Leijonmarck S, Cornell A, Lindbergh G, Wågberg L. Flexible nano-paper-based positive electrodes for Li-ion batteries-preparation process and properties. Nano Energy, 2013, 2(5): 794–800

    Article  CAS  Google Scholar 

  91. Cao S, Feng X, Song Y, Xue X, Liu H, Miao M, Fang J, Shi L. Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2015, 7(20): 10695–10701

    Article  CAS  Google Scholar 

  92. Razaq A, Nyholm L, Sjödin M, Strømme M, Mihranyan A. Paper-based energy-storage devices comprising carbon fiber-reinforced polypyrrole-cladophora nanocellulose composite electrodes. Advanced Energy Materials, 2012, 2(4): 445–454

    Article  CAS  Google Scholar 

  93. Lu H, Hagberg J, Lindbergh G, Cornell A. Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries. Nano Energy, 2017, 39: 140–150

    Article  CAS  Google Scholar 

  94. Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y. Silicon-conductive nanopaper for Li-ion batteries. Nano Energy, 2013, 2(1): 138–145

    Article  CAS  Google Scholar 

  95. Kuang Y, Chen C, Pastel G, Li Y, Song J, Mi R, Kong W, Liu B, Jiang Y, Yang K, Hu L. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Advanced Energy Materials, 2018, 8(33): 1802398

    Article  Google Scholar 

  96. Leijonmarck S, Cornell A, Lindbergh G, Wågberg L. Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry A, 2013, 1(15): 4671

    Article  CAS  Google Scholar 

  97. Choi K H, Cho S J, Chun S J, Yoo J T, Lee C K, Kim W, Wu Q, Park S B, Choi D H, Lee S Y, Lee S Y. Heterolayered, one-dimensional nanobuilding block mat batteries. Nano Letters, 2014, 14(10): 5677–5686

    Article  CAS  PubMed  Google Scholar 

  98. Cho S J, Choi K H, Yoo J T, Kim J H, Lee Y H, Chun S J, Park S B, Choi D H, Wu Q, Lee S Y, Lee S Y. Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Advanced Functional Materials, 2015, 25(38): 6029–6040

    Article  CAS  Google Scholar 

  99. Kuang Y, Chen C, Kirsch D, Hu L. Thick electrode batteries: principles, opportunities, and challenges. Advanced Energy Materials, 2019, 9(33): 1901457

    Article  Google Scholar 

  100. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science, 2019, 366(6468): eaan8285

    Article  CAS  PubMed  Google Scholar 

  101. Lu H, Guccini V, Kim H, Salazar-Alvarez G, Lindbergh G, Cornell A. Effects of different manufacturing processes on TEMPO-oxidized carboxylated cellulose nanofiber performance as binder for flexible lithium-ion batteries. ACS Applied Materials & Interfaces, 2017, 9(43): 37712–37720

    Article  CAS  Google Scholar 

  102. Lu H, Hagberg J, Lindbergh G, Cornell A. Flexible and lightweight lithium-ion batteries based on cellulose nanofibrils and carbon fibers. Batteries, 2018, 4(2): 17

    Article  Google Scholar 

  103. Li Y, Zhang H, **ao Z, Wang R. Flexible Li[Li0.2Ni0.13Co0.13Mn0.54]O2/carbon nanotubes/nanofibrillated celluloses composite electrode for high-performance lithium-ion battery. Frontiers in Chemistry, 2019, 7: 555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. El Baradai O, Beneventi D, Alloin F, Bultel Y, Chaussy D. Use of cellulose nanofibers as an electrode binder for lithium ion battery screen printing on a paper separator. Nanomaterials, 2018, 8(12): 982

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kim J M, Park C H, Wu Q, Lee S Y. 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Advanced Energy Materials, 2016, 6(2): 1501594

    Article  Google Scholar 

  106. Zhou S, Qiu Z, Strømme M, Wang Z. Highly crystalline PEDOT ]nanofiber templated by highly crystalline nanocellulose. Advanced Functional Materials, 2020, 30(49): 2005757

    Article  CAS  Google Scholar 

  107. ** H, Li J, Yuan Y, Wang J, Lu J, Wang S. Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Advanced Energy Materials, 2018, 8(23): 1801007

    Article  Google Scholar 

  108. Wu J, Zhang X, Ju Z, Wang L, Hui Z, Mayilvahanan K, Takeuchi K J, Marschilok A C, West A C, Takeuchi E S, Yu G. From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Advanced Materials, 2021, 33(26): e2101275

    Article  PubMed  Google Scholar 

  109. Park S H, King P J, Tian R, Boland C S, Coelho J, Zhang C, McBean P, McEvoy N, Kremer M P, Daly D, Coleman J N, Nicolosi V. High areal capacity battery electrodes enabled by segregated nanotube networks. Nature Energy, 2019, 4(7): 560–567

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Outstanding Youth Scientist Foundation of Hunan Province (Grant No. 2021JJ10017), China, and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Wang.

Ethics declarations

Conflicts of interest There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Z. Review on cellulose paper-based electrodes for sustainable batteries with high energy densities. Front. Chem. Sci. Eng. 17, 1010–1027 (2023). https://doi.org/10.1007/s11705-023-2307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2307-y

Keywords

Navigation