Log in

Room temperature in-situ preparation of hydrazine-linked covalent organic frameworks coated capillaries for separation and determination of polycyclic aromatic hydrocarbons

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) have been increasingly used in capillary electrochromatography due to their excellent characteristics. In this work, hydrazine-linked TFPB-DHzDS (TFPB: 1,3,5-tris(4-formylphenyl)benzene; DHzDS: 2,5-bis(3-(ethylthio)propoxy)terephthalo-hydrazide) was first synthesized by a simpler and easier method at room temperature and introduced into capillary electrochromatography as coating material. The TFPB-DHzDS coated capillaries were prepared by an in-situ growth process at room temperature. After optimizing the coating concentration and experimental conditions of capillary electrochromatography, baseline separation of two groups of polycyclic aromatic hydrocarbons was achieved based on the TFPB-DHzDS coated capillary. And the established method was used successfully to determine PAHs in natural water and soil samples. The spiked recoveries of polycyclic aromatic hydrocarbons in these samples ranged from 90.01% to 111.0%, indicating that the method is reliable and could detect polycyclic aromatic hydrocarbons in natural samples. Finally, molecular simulation was applied to study and visualize the interaction between the analytes and coating COF materials to investigate the molecular level separation mechanism further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cote A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170

    Article  CAS  PubMed  Google Scholar 

  2. Li Y, Pei B, Chen J J, Bing S S, Hou L X, Sun Q, Xu G, Yao Z K, Zhang L. Hollow nanosphere construction of covalent organic frameworks for catalysis: (Pd/C)@TpPa COFs in Suzuki coupling reaction. Journal of Colloid and Interface Science, 2021, 591: 273–280

    Article  CAS  PubMed  Google Scholar 

  3. Liu X M, Lim G J H, Wang Y X, Zhang L, Mullangi D, Wu Y, Zhao D, Ding J, Cheetham A K, Wang J. Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2adsorption. Chemical Engineering Journal, 2021, 403(1): 126333

    Article  CAS  Google Scholar 

  4. Zhao K, Gong P W, Huang J, Huang Y, Wang D D, Peng J Y, Shen D Y, Zheng X F, You J M, Liu Z. Fluorescence turn-off magnetic COF composite as a novel nanocarrier for drug loading and targeted delivery. Microporous and Mesoporous Materials, 2021, 311: 110713

    Article  CAS  Google Scholar 

  5. Guan Q, Guo H, Xue R, Wang M, Wu N, Cao Y, Zhao X, Yang W. Electrochemical sensing platform based on covalent organic framework materials and gold nanoparticles for high sensitivity determination of theophylline and caffeine. Mikrochimica Acta, 2021, 188(3): 85

    Article  CAS  PubMed  Google Scholar 

  6. Wu M, Chen G, Liu P, Zhou W, Jia Q. Polydopamine-based immobilization of a hydrazone covalent organic framework for headspace solid-phase microextraction of pyrethroids in vegetables and fruits. Journal of Chromatography A, 2016, 1456: 34–41

    Article  CAS  PubMed  Google Scholar 

  7. Wang H, Jiao F, Gao F, Lv Y, Wu Q, Zhao Y, Shen Y, Zhang Y, Qian X. Titanium(IV) ion-modified covalent organic frameworks for specific enrichment of phosphopeptides. Talanta, 2017, 166: 133–140

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Chen Z. COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel. Talanta, 2017, 165: 188–193

    Article  CAS  PubMed  Google Scholar 

  9. Feng L L, Qian C, Zhao Y L. Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic applications. ACS Materials Letters, 2020, 2(9): 1074–1092

    Article  CAS  Google Scholar 

  10. Zhou L, Lun J, Liu Y, Jiang Z, Di X, Guo X. In-situ immobilization of sulfated-β-cyclodextrin as stationary phase for capillary electrochromatography enantioseparation. Talanta, 2019, 200: 1–8

    Article  CAS  PubMed  Google Scholar 

  11. Sun W Q, Liu Y K, Zhou W, Li Z T, Chen Z L. In-situ growth of a spherical vinyl-functionalized covalent organic framework as stationary phase for capillary electrochromatography-mass spectrometry analysis. Talanta, 2021, 230: 122330

    Article  CAS  PubMed  Google Scholar 

  12. Yu Y X, Li G L, Liu J H, Yuan D Q. A recyclable fluorescent covalent organic framework for exclusive detection and removal of mercury(II). Chemical Engineering Journal, 2020, 401: 126139

    Article  CAS  Google Scholar 

  13. Geng K, He T, Liu R, Dalapati S, Tan K T, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Covalent organic frameworks: design, synthesis, and functions. Chemical Reviews, 2020, 120(16): 8814–8933

    Article  CAS  PubMed  Google Scholar 

  14. Ma W D, Zheng Q, He Y T, Li G R, Guo W J, Lin Z, Zhang L. Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides. Journal of the American Chemical Society, 2019, 141(45): 18271–18277

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Qiao J, Chee S W, Xu H S, Zhao X, Choi H S, Yu W, Quek S Y, Mirsaidov U, Loh K P. Rapid, scalable construction of highly crystalline acylhydrazone two-dimensional covalent organic frameworks via dipole-induced antiparallel stacking. Journal of the American Chemical Society, 2020, 142(10): 4932–4943

    Article  CAS  PubMed  Google Scholar 

  16. Zhao L, Lv W, Niu X, Pan C, Chen H, Chen X. An azine-linked covalent organic framework as stationary phase for separation of environmental endocrine disruptors by open-tubular capillary electrochromatography. Journal of Chromatography A, 2020, 1615: 460722

    Article  CAS  PubMed  Google Scholar 

  17. Bao T, Wang S, Zhang N, Zhang J. Facile synthesis and immobilization of functionalized covalent organic framework-1 for electrochromatographic separation. Journal of Chromatography A, 2021, 1645: 462130

    Article  CAS  PubMed  Google Scholar 

  18. Hu Y, Chen B, Qian J, ** L, ** T, Lu D. Occupational coke oven emissions exposure and risk of abnormal liver function: modifications of body mass index and hepatitis virus infection. Occupational and Environmental Medicine, 2010, 67(3): 159–165

    Article  CAS  PubMed  Google Scholar 

  19. Auer R, Concha-Lozano N, Jacot-Sadowski I, Cornuz J, Berthet A. Heat-not-burn tobacco cigarettes: smoke by any other name. JAMA Internal Medicine, 2017, 177(7): 1050–1052

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim D Y, Lee B E, Shin H S. Determination of polycyclic aromatic hydrocarbons (PAHs) in smoking cessation aids by using high-performance liquid chromatography. Analytical Biochemistry, 2021, 617(15): 114119

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Wang C, Gong P, Wang X, Zhu H, Gao S. Century-long record of polycyclic aromatic hydrocarbons from tree rings in the southeastern Tibetan Plateau. Journal of Hazardous Materials, 2021, 412: 125152

    Article  CAS  PubMed  Google Scholar 

  22. Cieslik E, Fabianska M J. Preservation of geochemical markers during co-combustion of hard coal and various domestic waste materials. Science of the Total Environment, 2021, 768: 144638

    Article  CAS  PubMed  Google Scholar 

  23. Schmutz A, Tremblay R, Audet C, Gagne J P, Pelletier E, St-Louis R. Under ice spills of conventional crude oil and diluted bitumen: physiological resilience of the blue mussel and transgenerational effects. Science of the Total Environment, 2021, 779: 146316

    Article  CAS  PubMed  Google Scholar 

  24. Zhang M, Tang Z, Yin H, Meng T. Concentrations, distribution and risk of polycyclic aromatic hydrocarbons in sediments from seven major river basins in China over the past 20 years. Journal of Environmental Management, 2021, 280: 111717

    Article  CAS  PubMed  Google Scholar 

  25. Tevlin A, Galarneau E, Zhang T, Hung H. Polycyclic aromatic compounds (PACs) in the Canadian environment: ambient air and deposition. Environmental Pollution, 2021, 271: 116232

    Article  CAS  PubMed  Google Scholar 

  26. Sosnowski T R, Kolinski M, Gradon L. Interactions of benzo[a]pyrene and diesel exhaust particulate matter with the lung surfactant system. Annals of Occupational Hygiene, 2011, 55(3): 329–338

    CAS  PubMed  Google Scholar 

  27. Karami S, Boffetta P, Brennan P, Stewart P A, Zaridze D, Matveev V, Janout V, Kollarova H, Bencko V, Navratilova M, Szeszenia-Dabrowska N, Mates D, Gromiec J P, Sobotka R, Chow W H, Rothman N, Moore L E. Renal cancer risk and occupational exposure to polycyclic aromatic hydrocarbons and plastics. Journal of Occupational and Environmental Medicine, 2011, 53(2): 218–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu L, Zhou S, Yu K, Gao B, Jiang H, Zhen X, Fu W. Molecular modeling of the 3D structure of 5-HT(1A)R: discovery of novel 5-HT(1A)R agonists via dynamic pharmacophore-based virtual screening. Journal of Chemical Information and Modeling, 2013, 53(12): 3202–3321

    Article  CAS  PubMed  Google Scholar 

  29. Yan W, Ling L, Wu Y, Yang K, Liu R, Zhang J, Zhao S, Zhong G, Zhao S, Jiang H, **e C, Cheng J. Structure-based design of dual-acting compounds targeting adenosine A2A receptor and histon1e deacetylase as novel tumor immunotherapeutic agents. Journal of Medicinal Chemistry, 2021, 64(22): 16573–16597

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Gao Q, Wang J, Chen Y, Chen Z H, Xu H S, Tang W, Leng K, Ning G H, Wu J, Xu Q H, Quek S Y, Lu Y, Loh K P. Tuneable near white-emissive two-dimensional covalent organic frameworks. Nature Communications, 2018, 9(1): 2335

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant Nos. 21705064 and 21675068) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjuan Lv or **aoyun Zhang.

Electronic Supplementary Material

11705_2022_2252_MOESM1_ESM.pdf

Room temperature in-situ preparation of hydrazine-linked covalent organic frameworks coated capillaries for separation and determination of polycyclic aromatic hydrocarbons

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lv, W., Wang, F. et al. Room temperature in-situ preparation of hydrazine-linked covalent organic frameworks coated capillaries for separation and determination of polycyclic aromatic hydrocarbons. Front. Chem. Sci. Eng. 17, 548–556 (2023). https://doi.org/10.1007/s11705-022-2252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2252-1

Keywords

Navigation