Log in

Study on the surface-modification of nano-hydroxyapatite with lignin and the corresponding nanocomposite with poly (lactide-co-glycolide)

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

To obtain nano-hydroxyapatite/poly(lactide-co-glycolide) (n-HA/PLGA) nanocomposite with superior mechanical properties, here, lignin was chosen to surface-modify for n-HA through co-precipitation method. The different reaction conditions of reaction time, phosphorus source, and the lignin addition amount were studied by fourier transformation infrared spectra, X-ray diffraction, the intuitionistic dispersion experiment, transmission electron microscope and thermal gravimetric analysis. The reaction mechanism and the best appropriate reaction condition were obtained. More importantly, the results of electromechanical universal tester, scanning electron microscope, differential scanning calorimetric analyzer, polarized optical microscopy and dynamic mechanical analysis confirmed that the obtained n-HA could greatly increase the mechanical strength of PLGA, owing to the excellent dispersion and promotion crystallization effect. Moreover, in vitro cell culture experimental results indicated that the n-HA surface-modified by lignin was favorable to improve the cell biocompatibility of PLGA. The study suggested that the introduction of lignin was a novel method to acquire a highly dispersed n-HA, which would provide a new idea to achieve the n-HA/PLGA nanocomposite as bone materials in future, and it would pave the way towards a new application of lignin in biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diao H X, Si Y F, Zhu A P, Ji L J, Shi H C. Surface modified nanohydroxyapatite/poly (lactide acid) composite and its osteocyte compatibility. Materials Science and Engineering C, 2012, 32(7): 1796–1801

    Article  CAS  Google Scholar 

  2. ** F L, Hu R R, Park S J. Improvement of thermal behaviors of biodegradable poly (lactic acid) polymer: a review. Composites. Part B, Engineering, 2019, 164: 287–296

    Article  CAS  Google Scholar 

  3. Lai P L, Hong D W, Lin C T Y, Chen L H, Chen W J, Chu I M. Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft. Composites. Part B, Engineering, 2012, 43(8): 3088–3095

    Article  CAS  Google Scholar 

  4. Haider A, Versace D, Gupta K C, Kang I K. Pamidronic acid-grafted nHA/PLGA hybrid nanofiber scaffolds suppress osteoclastic cell viability and enhance osteoblastic cell activity. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2016, 4(47): 7596–7604

    Article  CAS  Google Scholar 

  5. Shi X T, Wang Y J, Ren L, Gong Y H, Wang D A. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharmaceutical Research, 2009, 26(2): 422–430

    Article  CAS  Google Scholar 

  6. Li J, Lu X L, Zheng Y F. Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Applied Surface Science, 2008, 255(2): 494–497

    Article  CAS  Google Scholar 

  7. Akindoyo J O, Beg M D H, Ghazali S, Heim H P, Feldmann M. Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites. Composites. Part A, Applied Science and Manufacturing, 2017, 103: 96–105

    Article  CAS  Google Scholar 

  8. Jiang L Y, Jiang L X, **ong C D, Xu L J, Li Y. Effect of L-lysine-assisted surface-grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid). Journal of Biomaterials Applications, 2016, 30(6): 750–758

    Article  CAS  Google Scholar 

  9. Jiang L Y, **ong C D, Chen D L, Jiang L X, Pang X B. Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite. Applied Surface Science, 2012, 259: 72–78

    Article  Google Scholar 

  10. Jiang L Y, **ong C D, Jiang L X, Xu L J. Effect of HA with different grain size range on the crystallization behaviors and mechanical property of HA/PLGA composite. Thermochimica Acta, 2013, 565: 52–57

    Article  CAS  Google Scholar 

  11. Mao D Y, Li Q, Bai N N, Dong H Z, Li D K. Porous stable poly (lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydrate Polymers, 2018, 180: 104–111

    Article  CAS  Google Scholar 

  12. Musilova L, Mracek A, Kovalcik A, Smolka P, Minarik A, Humpolicek P, Vicha R, Ponizil P. Hyaluronan hydrogels modified by glycinated Kraft lignin: morphology, swelling, viscoelastic properties and biocompatibility. Carbohydrate Polymers, 2018, 181: 394–403

    Article  CAS  Google Scholar 

  13. Ding H J, Jiang L Y, Ma B L, Su S P. Preparation of a highly dispersed nano-hydroxyapatite by a new surfacemodificationstrategy used for a reinforce filler for poly(lactic-co-glycolide). Industrial & Engineering Chemistry Research, 2018, 57(50): 17119–17128

    Article  Google Scholar 

  14. Supanchaiyamat N, Jetsrisuparb K, Knijnenburg J T N, Tsang D C W, Hunt A J. Lignin materials for adsorption: current trend, perspectives and opportunities. Bioresource Technology, 2019, 272: 570–581

    Article  CAS  Google Scholar 

  15. Chen H Z. Chemical composition and structure of natural lignocellulose. In: Biotechnology of Lignocellulose. Berlin: Springer International Publishing, 2014, 25–71

    Chapter  Google Scholar 

  16. Zhan X J, Cai C, Pang Y X, Qin F Y, Lou H M, Huang J H, Qiu X Q. Effect of the isoelectric point of pH-responsive lignin-based amphoteric surfactant on the enzymatic hydrolysis of lignocelluloses. Bioresource Technology, 2019, 283: 112–119

    Article  CAS  Google Scholar 

  17. Meng Y, Lu J, Cheng Y, Li Q, Wang H S. Lignin-based hydrogels: a review of preparation, properties, and application. International Journal of Biological Macromolecules, 2019, 135: 1006–1019

    Article  CAS  Google Scholar 

  18. Tao Y Z, Guan Y T. Study of chemical composition of lignin and its application. Journal of Fuel Cell Science and Technology, 2003, 1: 42–55 (in Chinese)

    Google Scholar 

  19. Pang Y X, Bao X. Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. Journal of the European Ceramic Society, 2003, 23 (10): 1697–1704

    Article  CAS  Google Scholar 

  20. Elhendawi H, Felfel R M, Elhady B M A, Reicha F M. Effect of synthesis temperature on the crystallization and growth of in situ prepared nanohydroxyapatite in chitosan matrix. ISRN Biomaterials, 2014: 1–8

  21. Wang P P, Li C H, Gong H Y, Jiang X R, Wang H Q, Li K X. Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technology, 2010, 203(2): 315–321

    Article  CAS  Google Scholar 

  22. Bayani M, Torabi S, Shahnaz A, Pourali M. Main properties of nanocrystalline hydroxyapatite as a bone graft material in treatment of periodontal defects: a review of literature. Biotechnology, Biotechnological Equipment, 2017, 31(2): 215–220

    Article  CAS  Google Scholar 

  23. Turki T, Othmani M, Bantignies J L, Bouzouita K. Hydroxyapatite-phosphonoformic acid hybrid compounds prepared by hydrothermal method. Applied Surface Science, 2014, 290: 327–331

    Article  CAS  Google Scholar 

  24. Sawpan M A, Pickering K L, Fernyhough A. Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Composites. Part A, Applied Science and Manufacturing, 2011, 42(3): 310–319

    Article  Google Scholar 

  25. Zhang B J, He L, Han Z W, Li X G, Zhi W, Zheng W, Mu Y D, Weng J. Enhanced osteogenesis of multilayered pore-closed microsphere-immobilized hydroxyapatite scaffold via sequential delivery of osteogenic growth peptide and BMP-2. Journal of Materials Chemistry B, 2017, 5(41): 8238–8253

    Article  CAS  Google Scholar 

  26. Yuan X Y, Zhu B S, Tong G S, Su Y, Zhu X Y. Wet-chemical synthesis of Mg-doped hydroxyapatite nanoparticles by step reaction and ion exchange processes. Journal of Macromolecular Science, Part B: Physics, 2013, 1(47): 6551–6559

    CAS  Google Scholar 

  27. Shi P J, Liu M, Fan F J, Yu C P, Lu W H, Du M. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Materials Science and Engineering C, 2018, 90: 706–712

    Article  CAS  Google Scholar 

  28. Fernando M S, de Silva R M, de Silva K M N. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions. Applied Surface Science, 2015, 351: 95–103

    Article  CAS  Google Scholar 

  29. Jiang L X, Jiang L Y, Ma C, Han C T, **ong C D, Xu L J. Preparation and characterization of nano-hydroxyapatite/PLGA composites with novel surface-modified nano-hydroxyapatite. Journal of Inorganic Materials, 2013, 28(7): 751–756 (in Chinese)

    CAS  Google Scholar 

  30. Ando D, Nakatsubo F, Yano H. Thermal stability of lignin in ground pulp (GP) and the effect of lignin modification on GP’s thermal stability: TGA experiments with dimeric lignin model compounds and milled wood lignins. Holzforschung, 2019, 73(5): 493–499

    Article  CAS  Google Scholar 

  31. Hong Z K, Zhang P B, He C L, Qiu X Y, Liu A X, Chen L, Chen X, **g X B. Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials, 2005, 26(32): 296–6304

    Google Scholar 

  32. Zhang H Y, Choi J R, Park S J. Enhancing the heat and load transfer efficiency by optimizing the interface of hexagonal boron nitride/elastomer nanocomposites for thermal management applications. Polymer, 2018, 143: 1–9

    Article  Google Scholar 

  33. Zhang H Y, Choi J R, Park S J. Interlayer polymerization in amineterminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications. Composites. Part A, Applied Science and Manufacturing, 2018, 109: 498–506

    Article  CAS  Google Scholar 

  34. Yang D D, Liu W, Zhu H M, Wu G, Chen S C, Wang X L, Wang Y Z. Toward super-tough poly(L-lactide) via constructing pseudo-cross-link network in toughening phase anchored by stereocomplex crystallites at the interface. ACS Applied Materials & Interfaces, 2018, 10(31): 26594–26603

    Article  CAS  Google Scholar 

  35. Xuan D D, Zhou Y F, Nie W Y, Chen P P. Sodium alginate-assisted exfoliation of MoS2 and its reinforcement in polymer nanocomposites. Carbohydrate Polymers, 2017, 144: 25–32

    Google Scholar 

  36. Guo Y C, He S, Yang K, Xue Y, Zuo X H, Yu Y J, Liu Y, Chang C C, Rafailovich M H. Enhancing the mechanical properties of biodegradable polymer blends using tubular nanoparticle stitching of the interfaces. ACS Applied Materials & Interfaces, 2016, 8(27): 17565–17573

    Article  CAS  Google Scholar 

  37. Jankovic A, Erakovic S, Ristoscu C, Mihailescu N, Duta L, Visan A, Stan G E, Popa A C, Husanu M A, Luculescu C R, et al. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation. Journal of Materials Science. Materials in Medicine, 2015, 26(1): 1–14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of the Science and Technology Project of Changsha (Grant No. kq1907132), Natural Science Foundation of Province (Grant No. 2020JJ4430), Opening Found of Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University (Grant No. KLCBTCMR201812), Hunan Engineering Laboratory for Preparation Technology of Poly (vinyl alcohol) Fiber Material, Huaihua University (Grant No. HGY201812), the National Natural Science Foundation of China (Grant No. 51803055), Hunan Provincial Key Research and Development Program (Grant No. 2018GK2062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liuyun Jiang or **ang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Jiang, L., Tang, C. et al. Study on the surface-modification of nano-hydroxyapatite with lignin and the corresponding nanocomposite with poly (lactide-co-glycolide). Front. Chem. Sci. Eng. 15, 630–642 (2021). https://doi.org/10.1007/s11705-020-1970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1970-5

Keywords

Navigation