Log in

A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Self-standing porous WP2 nanosheet arrays on carbon fiber cloth (WP2 NSs/CC) were synthesized and used as a 3D flexible hydrogen evolution electrode. Because of its 3D porous nanoarray structure, the WP2 NSs/CC exhibits a remarkable catalytic activity and a high stability. By using the experimental measurements and first-principle calculations, the underlying reasons for the excellent catalytic activity were further explored. Our work makes the present WP2 NSs as a promising electrocatalyst for hydrogen evolution and provides a way to design and fabricate efficient hydrogen evolution electrodes through 3D porous nano-arrays architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chow J, Kopp R J, Portney P R. Energy resources and global development. Science, 2003, 302(5650): 1528–1531

    Article  PubMed  Google Scholar 

  2. **e L S, Ren X, Liu Q, Cui G W, Ge R W, Asiri A M, Sun X P, Zhang Q J, Chen L A. Ni(OH)2-PtO2 hybrid nanosheet array with ultralow Pt loading toward efficient and durable alkaline hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(5): 1967–1970

    Article  CAS  Google Scholar 

  3. Liu Q, Gu S, Li C M. Electrodeposition of nickel-phosphorus nanoparticles film as a janus electrocatalyst for electro-splitting of water. Journal of Power Sources, 2015, 299: 342–346

    Article  CAS  Google Scholar 

  4. Liu T T, **e L S, Yang J H, Kong R M, Du G, Asiri A M, Sun X P, Zhang Q J, Chen L. Self-standing CoP nanosheets array: A threedimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem, 2017, 4(8): 1840–1845

    Article  CAS  Google Scholar 

  5. Yuan W, Wang X, Zhong X, Li C M. CoP nanoparticles in situ grown in three-dimensional hierarchical nanoporous carbons as superior electrocatalysts for hydrogen evolution. ACS Applied Materials & Interfaces, 2016, 8(32): 20720–20729

    Article  CAS  Google Scholar 

  6. Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S, Schaak R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2013, 135(25): 9267–9270

    Article  CAS  PubMed  Google Scholar 

  7. Tian J, Liu Q, Cheng N, Asiri A M, Sun X. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angewandte Chemie International Edition, 2014, 53(36): 9577–9581

    Article  CAS  PubMed  Google Scholar 

  8. Pu Z, Liu Q, Asiri A M, Sun X. Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Applied Materials & Interfaces, 2014, 6(24): 21874–21879

    Article  CAS  Google Scholar 

  9. Du H F, Gu S, Liu R W, Li C M. Highly active and inexpensive iron phosphide nanorods electrocatalyst towards hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40(41): 14272–14278

    Article  CAS  Google Scholar 

  10. McKone J R, Warren E L, Bierman MJ, Boettcher S W, Brunschwig B S, Lewis N S, Gray H B. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy & Environmental Science, 2011, 4(9): 3573–3583

    Article  CAS  Google Scholar 

  11. Liu R W, Gu S, Du H F, Li C M. Controlled synthesis of FeP nanorod arrays as highly efficient hydrogen evolution cathode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(41): 17263–17267

    Article  CAS  Google Scholar 

  12. Pi M Y, Wu T L, Zhang D K, Chen S J, Wang S X. Facile preparation of semimetallic WP2 as a novel photocatalyst with high photoactivity. RSC Advances, 2016, 6(19): 15724–15730

    Article  CAS  Google Scholar 

  13. **ng Z C, Liu Q, Asiri A M, Sun X P. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catalysis, 2015, 5(1): 145–149

    Article  CAS  Google Scholar 

  14. Du H F, Gu S, Liu R W, Li C M. Tungsten diphosphide nanorods as an efficient catalyst for electrochemical hydrogen evolution. Journal of Power Sources, 2015, 278: 540–545

    Article  CAS  Google Scholar 

  15. Lu Z, Zhu W, Yu X, Zhang H, Li Y, Sun X, Wang X, Wang H, Wang J, Luo J, Lei X, Jiang L. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Advanced Materials, 2014, 26(17): 2683–2687, 2615

    Article  CAS  PubMed  Google Scholar 

  16. Faber M S, Dziedzic R, Lukowski M A, Kaiser N S, Ding Q, ** S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. Journal of the American Chemical Society, 2014, 136(28): 10053–10061

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, **ong K, Chen S G, Li L, Deng Z H, Wei Z D. In situ growth of ruthenium oxide-nickel oxide nanorod arrays on nickel foam as a binder-free integrated cathode for hydrogen evolution. Journal of Power Sources, 2015, 274: 114–120

    Article  CAS  Google Scholar 

  18. Jiang P, Liu Q, Sun X. NiP2 nanosheet arrays supported on carbon cloth: an efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 2014, 6(22): 13440–13445

    Article  CAS  PubMed  Google Scholar 

  19. You B, Jiang N, Sheng M, Gul S, Yano J, Sun Y. High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks. Chemistry of Materials, 2015, 27(22): 7636–7642

    Article  CAS  Google Scholar 

  20. Li D, Baydoun H, Verani C N, Brock S L. Efficient water oxidation using CoMnP nanoparticles. Journal of the American Chemical Society, 2016, 138(12): 4006–4009

    Article  CAS  PubMed  Google Scholar 

  21. Niu Z, Jiang J, Ai A. Porous cobalt phosphide nanorod bundle arrays as hydrogen-evolving cathodes for electrochemical water splitting. Electrochemistry Communications, 2015, 56: 56–60

    Article  CAS  Google Scholar 

  22. Wu T L, Pi M Y, Zhang D K, Chen S J. Three-dimensional porous structural MoP2 nanoparticles as a novel and superior catalyst for electrochemical hydrogen evolution. Journal of Power Sources, 2016, 328: 551–557

    Article  CAS  Google Scholar 

  23. Liu Y, Li J, Li WZ, Yang Y H, Li Y M, Chen Q Y. Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium do**. Journal of Physical Chemistry C, 2015, 119(27): 14834–14842

    Article  CAS  Google Scholar 

  24. **ao P, Sk M A, Thia L, Ge X M, Lim R J, Wang J Y, Lim K H, Wang X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy & Environmental Science, 2014, 7(8): 2624–2629

    Article  CAS  Google Scholar 

  25. Kucernak A R J, Naranammalpuram Sundaram V N. Nickel phosphide: The effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(41): 17435–17445

    Article  CAS  Google Scholar 

  26. Callejas J F, Read C G, Popczun E J, Mcenaney J M, Schaak R E. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chemistry of Materials, 2015, 27(10): 3769–3774

    Article  CAS  Google Scholar 

  27. Guo D, Luo Y, Yu X, Li Q, Wang T. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy, 2014, 8: 174–182

    Article  CAS  Google Scholar 

  28. Wan L, Zhang J, Chen Y, Zhong C, Hu W, Deng Y. Nickel phosphide nanosphere: A high-performance and cost effective catalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41(45): 20515–20522

    Article  CAS  Google Scholar 

  29. Liu D, Lu Q, Luo Y, Sun X, Asiri A M. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale, 2015, 7(37): 15122–15126

    Article  CAS  PubMed  Google Scholar 

  30. Pi MY, Wu T L, Zhang D K, Chen S J, Wang S X. Phase-controlled synthesis and comparative study of α-and β-WP2 submicron particles as efficient electrocatalysts for hydrogen evolution. Electrochimica Acta, 2016, 216(9): 304–311

    Article  CAS  Google Scholar 

  31. Wang J, Zheng Y, Nie F Q, Zhai J, Jiang L. Air bubble bursting effect of lotus leaf. Langmuir, 2009, 25(24): 14129–14134

    Article  CAS  PubMed  Google Scholar 

  32. Gao M R, Liang J X, Zheng Y R, Xu Y F, Jiang J, Gao Q, Li J, Yu S H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(6): 5982–5988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang D Y, Gong M, Chou H L, Pan C J, Chen H A, Wu Y, Lin MC, Guan M, Yang J, Chen C W, Wang Y L, Hwang B J, Chen C C, Dai H. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. Journal of the American Chemical Society, 2015, 137(4): 1587–1592

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51672031) and the Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJQJ308820 and 106112017CDJXSYY0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijian Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, M., Wang, X., Zhang, D. et al. A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution. Front. Chem. Sci. Eng. 12, 425–432 (2018). https://doi.org/10.1007/s11705-018-1726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1726-7

Keywords

Navigation