Log in

Knockdown of ACS9 expression in Arabidopsis decreases the tolerance to salt and osmotic stress

  • Research Article
  • Published:
Frontiers of Agriculture in China

Abstract

Based on the DNA sequence of ACS9, two produced fragments were subcloned into binary vector pCAMBIA1300 in antisense and sense orientations, and the generated RNA interference (RNAi) vector was then transformed into Arabidopsis thaliana. The stress resistance function of ACS9 gene in Arabidopsis thaliana was researched by determination of stress resistance physiologic indexes, NaCl and PEG6000 resistance. The results showed that the inhibition of ACS9 expression enhanced the sensitivity to high concentration NaCl (150 mmol/L) and PEG6000 (7%) in Arabidopsis thaliana seeding stage. The proline contents and water loss rates in transgenic plants were 0.68 and 1.4 times higher than those in the wild-type leaves, respectively, indicating that the inhibition of ACS9 expression due to salt and drought resistant was reduced and suggested that ACS9 gene played important roles in plant salt and drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles F B, Morgan P W, Saltveit M E Jr (1992). Ethylene in plant biology. New York: Academic Press, Inc

    Google Scholar 

  • Adams D O, Yang S F (1979). Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA, 76(1): 170–174

    Article  PubMed  CAS  Google Scholar 

  • Alonso J M, Stepanova A N (2004). The ethylene signaling pathway. Science, 306(5701): 1513–1515

    Article  PubMed  CAS  Google Scholar 

  • Bates L S, Waldren R P, Teare I D (1973). Rapid determination of free proline for water-strress studies. Plant and Soil, 39(1): 205–207

    Article  CAS  Google Scholar 

  • Bleecker A B, Kende H (2000). Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol, 16(1): 1–18

    Article  PubMed  CAS  Google Scholar 

  • Boller T, Herner R C, Kende H (1979). Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta, 145(3): 293–303

    Article  CAS  Google Scholar 

  • Chen Y F, Etheridge N, Schaller G E (2005). Ethylene signal transduction. Annals of Botany, 95(6): 901–915

    Article  PubMed  CAS  Google Scholar 

  • Chen Z Z, Hong X H, Zhang H R, Wang Y Q, Li X, Zhu J K, Gong Z Z (2005). Disruption of the cellulose synthasegene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. The Plant J, 43: 273–283

    Article  CAS  Google Scholar 

  • Chuang C F, Meyerowitz E M (2000). Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA, 97(9): 4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Clarke J M, Mccaig T N (1982). Evaluation of techniques for screening for drought resistance in wheat. Crop Sci, 22: 503–506

    Article  Google Scholar 

  • Clough S J, Bent A F (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 16(6): 735–743

    Article  PubMed  CAS  Google Scholar 

  • Cornelius S B, James J G (2006). Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. PNAS, 103(20): 7923–7928

    Article  Google Scholar 

  • Ferrari S, Vairo D, Ausubel F M, Cervone F, Lorenzo D G (2003). Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell, 15(1): 93–106

    Article  PubMed  CAS  Google Scholar 

  • Ge L, Liu J Z, Wong W S, Hsiao W L W, Chong K, Xu Z K, Yang S F, Kung S D, Li N (2000). Identication of a novel multiple environmental factor-responsive 1-aminocyclopropane-1-carboxylate synthase gene, NT-ACS2, from tobacco. Plant Cell Environ, 23(11): 169–182

    Article  Google Scholar 

  • Gómez-Cadenas A, Tadeo F R, Primo-Millo E, Talon M (1998). Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt shock. Physiologia Plantarum, 103(4): 475–484

    Article  Google Scholar 

  • Liu D, Li N, Dube S, Kalinski A, Herman E, Mattoo A K (1993). Molecular characterization of a rapidly and transiently wound-induced soybean (Glycine max L.) gene encoding 1-aminocyclopropane-1-carboxylate synthase. Plant and Cell Physiol, 34: 1151–1157

    CAS  Google Scholar 

  • O’Donnell P J, Calvert C, Atzorn R, Wasternack C, Leyser H M O, Bowles D J (1996). Ethylene as a signal mediating the wound response of tomato plants. Science, 274(5294): 1914–1917

    Article  PubMed  Google Scholar 

  • Pan Y G (2009). Functional confirmation and promoter activity of Phytophthora infestans-defense related ACS9 gene in Arabidopsis. Dissertation for the Master Degree. Baoding: Agricultural University of Hebei, 38–39 (in Chinese)

    Google Scholar 

  • Peng H P, Lin T Y, Wang N N, Shih M C (2005). Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol Biol, 58(1): 15–25

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Sasidharan R, Voesenek L A C J (2007). Growth control by ethylene: Adjusting pheno types to the environment. Plant Growth Regul, 26(2): 188–200

    Article  CAS  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser E J, Voesenek L A C J (2006). The Janus face of ethylene: growth inhibition and stimulation. Trends in Plant Sci, 11(4): 176–183

    Article  CAS  Google Scholar 

  • Smith N A, Singh S P, Wang M B, Stoutjesdijk P A, Green A G, Waterhouse P M (2000). Total silencing by intron-spliced hairpin RNAs. Nature, 407(6802): 319–320

    Article  PubMed  CAS  Google Scholar 

  • Straeten D V, Wiemeersch V L, Goodman H M, Montagu M V (1990). Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. Proc Natl Acad Sci USA, 87(12): 4859–4863

    Article  PubMed  Google Scholar 

  • Tsuchisaka A, Guixia Yu, Hailing **, Alonso J M, Ecker J R, **aoming Zhang, Shang Gao, Theologis A (2009). A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics, 183(3): 979–1003

    Article  PubMed  CAS  Google Scholar 

  • Tsuchisaka A, Theologis A (2004). Unique and overlap** expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol, 136(2): 2982–3000

    Article  PubMed  CAS  Google Scholar 

  • Wang N N, Shih M C, Li N (2005). The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. Journal of Experimental Botany, 56(413): 909–920

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2004). Arabidopsis: A Laboratory Manual. Bei**g: Chinese Industry Press, 165–166

    Google Scholar 

  • Yamagami T, Tsuchisaka A, Yamada K, Haddon W F, Harden L A, Theologis A (2003). Biochemical diversity among the 1-aminocyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem, 278(49): 49102–49112

    Article  PubMed  CAS  Google Scholar 

  • Yang S F, Hoffman N E (1984). Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol, 35(1): 155–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingchao Liu or **gao Dong.

About this article

Cite this article

Han, X., Pan, Y., Liu, Y. et al. Knockdown of ACS9 expression in Arabidopsis decreases the tolerance to salt and osmotic stress. Front. Agric. China 5, 181–186 (2011). https://doi.org/10.1007/s11703-011-1022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-011-1022-5

Keywords

Navigation