Log in

Sensory detection of selective substituted acyl chloride and nitrobenzene-sulfonyl chloride by interaction with 1-amino-4-hydroxy-9,10-anthraquinone using spectrophotometry and cyclic voltammetry

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Chemical compounds belonging to the quinone class are known for their cyclic diketone structures. Anthraquinone derivatives have been used as sensing materials and dyes or pigments. The spectroscopic and voltammetric sensing capacity of 1-amino-4-hydroxy-9,10-anthraquinone was utilised to sense 2-bromobenzene-sulfonyl chloride, 4-nitrobenzene-sulfonyl chloride, benzoyl chloride, 2-chlorobenzoyl chloride, and 4-bromobenzoyl chloride. These substituted acyl chlorides and nitrobenzene-sulfonyl chloride are important intermediates in various reactions, and the product formation is highly dependent on their concentration. Therefore, it is crucial to take special care as all these compounds are carcinogenic. All studies were carried out in ethanol solvent. Results showed that 1-AHAQ could be effectively used as a UV–visible sensor for sensing 2-bromobenzene-sulfonyl chloride. 1-AHAQ demonstrates good results as a fluorescence sensor for sensing 4-bromobenzene-sulfonyl chloride and behaves as a good voltammetric sensor for sensing 4-nitrobenzene-sulfonyl chloride.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the written material is new not a copy.

Code availability

Not applicable.

References

  • Ahmmed F, Islam AU, Mukhrish YE (2022) Efficient antibacterial/antifungal activities: synthesis, molecular docking, molecular dynamics. Pharmacokinetic Bind Free Energy Galactopyranoside Deriv 28(1):219

    Google Scholar 

  • Ajloo D, Yoonesi B, Soleymanpour A (2010) Solvent effect on the reduction potential of anthraquinones derivatives. The experimental and computational studies. Int J Electrochem Sci 5:459–477

    Article  CAS  Google Scholar 

  • Alwi RS, Garlapati C, Tamura K (2021) Solubility of anthraquinone derivatives in supercritical carbon dioxide: new correlations. Molecules 26(2):460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anowar Hosen M et al (2022) Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Bioorg Chem 125:105850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya P, Mukherjee S, Mandal SM (2020) Fluoroquinolone antibiotics show genotoxic effect through DNA-binding and oxidative damage. Spectrochim Acta Part A Mol Biomol Spectrosc 227:117634

    Article  CAS  Google Scholar 

  • Bobe SR et al (2015) A near-infrared fluoride sensor based on a substituted naphthalenediimide–anthraquinone conjugate. Tetrahedron Lett 56(33):4762–4766

    Article  CAS  Google Scholar 

  • Caro Y et al (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2(5):174–193

    Article  CAS  PubMed Central  Google Scholar 

  • Carter MT, Rodriguez M, Bard AJ (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2’-bipyridine. J Am Chem Soc 111(24):8901–8911

    Article  CAS  Google Scholar 

  • Çil E, Arslan M, Görgülü A (2006) Synthesis and characterization of benzyl and benzoyl substituted oxime-phosphazenes. Polyhedron 25(18):3526–3532

    Article  Google Scholar 

  • Dobo KL et al (2006) The application of structure-based assessment to support safety and chemistry diligence to manage genotoxic impurities in active pharmaceutical ingredients during drug development. Regul Toxicol Pharmacol 44(3):282–293

    Article  CAS  PubMed  Google Scholar 

  • Dufossé L (2014) Anthraquinones, the Dr Jekyll and Mr Hyde of the food pigment family. Food Res Int 65:132–136

    Article  Google Scholar 

  • El Ashry ESH, Rashed N (2008) 10.16-Bicyclic 6–6 systems: three heteroatoms 1:2. In: Katritzky AR et al (eds) Comprehensive heterocyclic chemistry III. Elsevier, Oxford, pp 759–845

    Chapter  Google Scholar 

  • Erden I (1996) 1.03-Oxiranes and oxirenes: monocyclic. In: Katritzky AR, Rees CW, Scriven EFV (eds) Comprehensive heterocyclic chemistry II. Pergamon, Oxford, pp 97–144

    Chapter  Google Scholar 

  • Evans PD et al (2002) Weathering and photostability of benzoylated wood. Polym Degrad Stab 76(2):291–303

    Article  CAS  Google Scholar 

  • Forti J et al (2007) Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone. J Electroanal Chem 601(1–2):63–67

    Article  CAS  Google Scholar 

  • Gessler N, Egorova A, Belozerskaya T (2013) Fungal anthraquinones. Appl Biochem Microbiol 49(2):85–99

    Article  CAS  Google Scholar 

  • Gholivand M, Kashanian S, Peyman H (2012) DNA-binding, DNA cleavage and cytotoxicity studies of two anthraquinone derivatives. Spectrochim Acta Part A Mol Biomol Spectrosc 87:232–240

    Article  CAS  Google Scholar 

  • Guin PS, Das S (2014) Exploration of electrochemical intermediates of the anticancer drug doxorubicin hydrochloride using cyclic voltammetry and simulation studies with an evaluation for its interaction with DNA. Int J Electrochem 2014:517371

    Article  Google Scholar 

  • Guin PS, Das S, Mandal P (2008) Electrochemical reduction of sodium 1,4-dihydroxy-9,10-anthraquinone-2-sulphonate in aqueous and aqueous dimethyl formamide mixed solvent: a cyclic voltammetric study. Int J Electrochem Sci 3(9):1016–1028

    Article  CAS  Google Scholar 

  • Guin PS, Das S, Mandal P (2011) Electrochemical reduction of quinones in different media: a review. Int J Electrochem 2011:816202

    Article  Google Scholar 

  • Guin PS, Mandal P, Das S (2012a) A comparative study on the interaction with calf thymus DNA of a Ni(II) complex of the anticancer drug adriamycin and a Ni(II) complex of sodium 1,4-dihydroxy-9,10-anthraquinone-2-sulphonate. J Coord Chem 65(4):705–721

    Article  CAS  Google Scholar 

  • Guin PS, Mandal PC, Das S (2012b) The binding of a hydroxy-9, 10-anthraquinone cuii complex to calf thymus DNA: electrochemistry and UV/Vis spectroscopy. ChemPlusChem 77(5):361–369

    Article  CAS  Google Scholar 

  • He X et al (2023) Cyanine/iodonium salt as a broad-absorbing photoinitiating system for radical photopolymerization under near-UV, visible and NIR light. Polym Chem 14(13):1543–1553

    Article  CAS  Google Scholar 

  • Hill NS (2020) Theoretical mechanistic insights into ground-and excited-state approaches to modifying reactivity. The Australian National University (Australia)

    Google Scholar 

  • Imran S et al (2018) Effect of electrolytes on the solubility and solution thermodynamics of 1-amino-4-hydroxy-9,10-anthraquinone, an analogue of anthracycline anticancer drugs, in aqueous ethanol media using theoretical and UV–Vis spectroscopic study. J Mol Liq 252:151–157

    Article  CAS  Google Scholar 

  • Kaur N (2023) Insight into the binding interactions of fluorenone-pendent Schiff base with calf thymus DNA. Anal Biochem 675:115216

    Article  PubMed  Google Scholar 

  • Kopp MR et al (2022) Surface-induced protein aggregation and particle formation in biologics: current understanding of mechanisms, detection and mitigation strategies. J Pharmaceut Sci 112:377–385

    Article  Google Scholar 

  • Kostjukova LO, Leontieva SV, Kostjukov VV (2021) The vibronic absorption spectra and electronic states of acridine orange in aqueous solution. Spectrochim Acta Part A Mol Biomol Spectrosc 249:119302

    Article  CAS  Google Scholar 

  • Kulik PH (2008) Van Nostrand’s scientific encyclopedia. Wiley, New York

    Google Scholar 

  • Kwon SA et al (2009) Photoresist composition and method of manufacturing a color filter substrate by using the same. Google Patents

  • Langdon-Jones EE, Pope SJ (2014) The coordination chemistry of substituted anthraquinones: developments and applications. Coord Chem Rev 269:32–53

    Article  CAS  Google Scholar 

  • Leggio A et al (2007) N-Nosyl-α-amino acids in solution phase peptide synthesis. Tetrahedron 63(34):8164–8173

    Article  CAS  Google Scholar 

  • Li DY et al (2022) Ultra-sensitive, selective and repeatable fluorescence sensor for methanol based on a highly emissive 0D hybrid lead-free perovskite. Angew Chem 134(35):e202206437

    Article  Google Scholar 

  • Mahadik SS et al (2022) Synthesis, optical, electrochemical and theoretical studies of 2, 3-di(pyridin-2-yl) quinoxaline amine derivatives as blue-orange emitters for organic electronics. J Mol Struct 1248:131541

    Article  CAS  Google Scholar 

  • Malik EM, Baqi Y, Müller CE (2015) Syntheses of 2-substituted 1-amino-4-bromoanthraquinones (bromaminic acid analogues)–precursors for dyes and drugs. Beilstein J Org Chem 11(1):2326–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik EM et al (2016) Ullmann reactions of 1-amino-4-bromoanthraquinones bearing various 2-substituents furnishing novel dyes. Dyes Pigm 131:33–40

    Article  CAS  Google Scholar 

  • Manisankar P, Gomathi A, Velayutham D (2005) Oxygen reduction at the surface of glassy carbon electrodes modified with anthraquinone derivatives and dyes. J Solid State Electrochem 9:601–608

    Article  CAS  Google Scholar 

  • Mehran S et al (2019) Study of the binding interaction between wortmannin and calf thymus DNA: multispectroscopic and molecular docking studies. Evid Based Complement Altern Med 2019:4936351

    Article  Google Scholar 

  • Motallebi S, Maghsoodi S (2013) Anthraquinone dye-containing material, composition including the same, camera including the same, and associated methods. Google Patents

  • Müthing J (2000) [6]-Analyses of glycosphingollpids by high-performance liquid chromatography. In: Merrill AH, Hannun YA (eds) Methods in enzymology. Academic Press, pp 45–64

    Google Scholar 

  • Nikolić MA et al (2021) Binuclear Co(II) complexes with macrocycle and carboxylato ligands: structure, cytotoxicity and thermal behavior. J Mol Struct 1236:130133

    Article  Google Scholar 

  • Nimal R, Shah A, Saddiq M (2020) Thermodynamic characterisation of triazol ylimino-DNA interaction by UV–Vis spectroscopy. J Photochem Photobiol 2:100006

    Article  Google Scholar 

  • Palit DK et al (1991) Photodynamics of the S1 state of some hydroxy- and amino-substituted naphthoquinones and anthraquinones. ChemInform 8:22

    Google Scholar 

  • Pankewitz F et al (2007) Anthraquinones as defensive compounds in eggs of Galerucini leaf beetles: biosynthesis by the beetles? Arch Insect Biochem Physiol 66(2):98–108

    Article  CAS  PubMed  Google Scholar 

  • Pulyani M, Chauhan S (2023) Aloevera and banana sap as biomordant for dyeing of bamboo fabric with natural dyes

  • Qi W et al (2009) Glucose-sensitive microcapsules from glutaraldehyde cross-linked hemoglobin and glucose oxidase. Biomacromol 10(5):1212–1216

    Article  CAS  Google Scholar 

  • Radi A, El Ries M, Kandil S (2003) Electrochemical study of the interaction of levofloxacin with DNA. Anal Chim Acta 495(1–2):61–67

    Article  CAS  Google Scholar 

  • Ramotowska S et al (2019) Hydrogen bonding and protonation effects in amino acids’ anthraquinone derivatives-spectroscopic and electrochemical studies. Spectrochim Acta Part A Mol Biomol Spectrosc 222:117226

    Article  CAS  Google Scholar 

  • Roy S, Guin PS (2014) Solvation of 1-amino-4-Hydroxy-9, 10-anthraquinone governs its electrochemical behavior in non-aqueous and aqueous media: a cyclic voltammetry study. J Electrochem Soc 162(3):H124

    Article  Google Scholar 

  • Roy S, Guin PS (2015) Investigation on the interaction of 1-amino-4-hydroxy-9, 10-anthraquinone with calf thymus DNA and CTAB micelles. J Mol Liq 211:846–853

    Article  CAS  Google Scholar 

  • Roy S et al (2015) Spectroscopic, computational and electrochemical studies on the formation of the copper complex of 1-amino-4-hydroxy-9, 10-anthraquinone and effect of it on superoxide formation by NADH dehydrogenase. Dalton Trans 44(12):5428–5440

    Article  CAS  PubMed  Google Scholar 

  • Saini R, Kaur N, Kumar S (2014) Quinones based molecular receptors for recognition of anions and metal ions. Tetrahedron 70(29):4285–4307

    Article  CAS  Google Scholar 

  • Shahabadi N, Akhtarshenas S, Hadidi S (2019) Synthesis, characterization and DNA interaction studies of new copper complex containing pseudoephedrine hydrochloride drug. Nucleosides Nucleotides Nucleic Acids 38(9):680–699

    Article  CAS  PubMed  Google Scholar 

  • Shaikh AM, Chacko S, Kamble RM (2017) Synthesis, optoelectronic and theoretical investigation of anthraquinone amine-based donor−acceptor derivatives. ChemistrySelect 2(25):7620–7629

    Article  CAS  Google Scholar 

  • Shaw DW (2009) Allergic contact dermatitis from carmine. Dermatitis 20(5):292–295

    Article  PubMed  Google Scholar 

  • Sheeba KRJ et al (2023) Enhancing structural, thermal, and mechanical properties of Acacia pennata natural fibers through benzoyl chloride treatment for construction applications. Case Stud Constr Mater 19:e02443

    Google Scholar 

  • Suktham K, Daisuk P, Shotipruk A (2021) Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia L. (Rubiaceae): errata and review of technological development and prospects. Sep Purif Technol 256:117844

    Article  CAS  Google Scholar 

  • Sun L et al (2023) Synthetic approaches and application of clinically approved small-molecule anti-HIV drugs: an update. Eur J Med Chem 8:115847

    Article  Google Scholar 

  • Tang Z et al (2022) Cinnamoylformate derivatives photoinitiators with excellent photobleaching ability and cytocompatibility for visible LED photopolymerization. Prog Org Coat 170:106969

    Article  CAS  Google Scholar 

  • Uchimiya M, Stone AT (2009) Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 77(4):451–458

    Article  CAS  PubMed  Google Scholar 

  • Wang L et al (2023) Conformational changes to zein and its binding interactions with sodium caseinate during the pH-driven self-assembly using multi-spectroscopic and hydrostatic methods. Food Hydrocoll 136:108225

    Article  CAS  Google Scholar 

  • Wannajuk K et al (2012) Highly specific-glucose fluorescence sensing based on boronic anthraquinone derivatives via the GOx enzymatic reaction. Tetrahedron 68(43):8899–8904

    Article  CAS  Google Scholar 

  • Zhao C, Huang L, Wang Q (2022) Novel mononuclear zinc(II) complex with niacin: crystal structure, DNA/protein interaction, and cytotoxicity studies. J Appl Spectrosc 8:1–10

    Google Scholar 

Download references

Funding

No fundings.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design of this article is collective contribution of all authors. They all read and approve the final manuscript of this research article. Bushra Tariq along with Sadia Asim plays a vital role in collecting data regarding the absorption and emission studies of 1-amino-4-hydroxy-9,10-Anthraquinone and effect of salts on selected fluorophore to be used as sensor. The voltammetric studies regarding the effect of salts on 1-amino-4-hydroxy-9,10-anthraquinone and its uses as voltammetric sensor were carried out by Asim Mansha and Sobia Noreen. The first draft of manuscript was written by Bushra Tariq which was later refined by Sadia Asim, Sobia Noreen and Asim Mansha.

Corresponding authors

Correspondence to Asim Mansha or Sadia Asim.

Ethics declarations

Conflict of interest

The review article entitled “sensory detection of selective substituted acyl chloride and nitrobenzene-sulfonyl chloride by interaction with1-amino-4-hydroxy-9,10-anthraquinone using spectrophotometry and cyclic voltammetry”. All the authors involved in the write up of this article do not have any conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Yes, i got permission.

Consent for publication

Yes, u can publish it.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, B., Mansha, A., Asim, S. et al. Sensory detection of selective substituted acyl chloride and nitrobenzene-sulfonyl chloride by interaction with 1-amino-4-hydroxy-9,10-anthraquinone using spectrophotometry and cyclic voltammetry. Chem. Pap. (2024). https://doi.org/10.1007/s11696-024-03546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11696-024-03546-8

Keywords

Navigation