Log in

Enhancing urinalysis with smartphone and AI: a comprehensive review of point-of-care urinalysis and nutritional advice

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Point-of-care diagnostics (POC), including urine test strips, offer several advantages over traditional laboratory-based urine analysis. POC allows us to regulate our nutritional needs. Urine analysis is a common diagnostic and well-being monitoring tool used to evaluate the overall health of an individual. It involves the examination of a sample of urine to detect and measure various substances and markers found in urine, such as proteins, glucose, leukocytes, ketones, and bilirubin, among others. Urine test strips, also known as dipstick tests, are a quick and convenient method of urine analysis that can be performed in conjunction with smartphone and AI-based analyses. These tests use a small strip of paper with chemically-treated reagents that change color when they react with specific substances found in urine. Dietary intake can have a significant impact on the composition of urine, as certain nutrients and compounds are metabolized and excreted through the kidneys. Understanding the effects of dietary intake on urine biomarkers can provide valuable insight into the overall health and nutritional status of individuals. This review explores existing literature to highlight the intersection between strip-based urine analysis, smartphone-based analysis, gold standards, and recent developments in urine analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adrogué HJ, Madias NE (2007) Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 356(19):1966–1978

    PubMed  Google Scholar 

  • Akagawa Y, Kimata T, Akagawa S, Fujishiro S, Kato S, Yamanouchi S, Tsuji S, Kino M, Kaneko K (2020) Optimal bacterial colony counts for the diagnosis of upper urinary tract infections in infants. Clin Exp Nephrol 24(3):253–258

    PubMed  Google Scholar 

  • Aksenov SV, Kostin KA, Ivanova AV, Liang J, Zamyatin AV (2018) An ensemble of convolutional neural networks for the use in video endoscopy. Coвpeмeнныe тexнoлoгии в мeдицинe 10:7–17

    Google Scholar 

  • Al Alawi AM, Majoni SW, Falhammar H (2018) Magnesium and human health: perspectives and research directions. Int J Endocrinol. https://doi.org/10.1155/2018/9041694

    Article  PubMed  PubMed Central  Google Scholar 

  • Alzahrani AS, Gay V, Alturki R, AlGhamdi MJ (2021) Towards understanding the usability attributes of AI-enabled eHealth mobile applications. J Healthcare Eng. https://doi.org/10.1155/2021/5313027

    Article  Google Scholar 

  • American Diabetes Association (2020) Diagnosis and classification of diabetes mellitus. Diabetes Care vol 43(Supplement 1), p S13-S28

  • Anderson JC, Mattar SG, Greenway FL, Lindquist RJ (2021) Measuring ketone bodies for the monitoring of pathologic and therapeutic ketosis. Obes Sci Pract 7(5):646–656

    PubMed  PubMed Central  Google Scholar 

  • António M, Vitorino R, Daniel-da-Silva AL (2021) Gold nanoparticles-based assays for biodetection in urine. Talanta 230:122345

    PubMed  Google Scholar 

  • Armstrong LE, Pumerantz AC, Roti MW, Judelson DA, Waton G, Dias JC, Sökmen B, Case DJ, Maresh CM, Lieberman H, Kellogg M (2005) Fluid, electrolyte, and renal indices of hydration during 11 days of controlled caffeine consumption. Int J Sport Nutr Exerc Metab 15(3):252–265

    CAS  PubMed  Google Scholar 

  • Babateen AM, Fornelli G, Donini LM, Mathers JC, Siervo M (2018) Assessment of dietary nitrate intake in humans: a systematic review. Am J Clin Nutr 108(4):878–888

    PubMed  Google Scholar 

  • Barratt J, Topham P (2007) Urine proteomics: the present and future of measuring urinary protein components in disease. CMAJ 177(4):361–368

    PubMed  PubMed Central  Google Scholar 

  • Beer JH, Vogt A, Neftel K, Cottagnoud P (1996) False positive results for leucocytes in urine dipstick test with common antibiotics. BMJ 313(7048):25–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw MP, Barril C, Clark AC, Prenzler PD, Scollary GR (2011) Ascorbic acid: a review of its chemistry and reactivity in relation to a wine environment. Crit Rev Food Sci Nutr 51(6):479–498

    CAS  PubMed  Google Scholar 

  • Brindle JT, Nicholson JK, Schofield PM, Grainger DJ, Holmes E (2003) Application of chemometrics to 1 H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst 128(1):32–36

    ADS  CAS  PubMed  Google Scholar 

  • Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA (2009) Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem 81(9):3285–3296

    CAS  PubMed  Google Scholar 

  • Bruzzone C, Gil-Redondo R, Seco M, Barragán R, de la Cruz L, Cannet C, Schäfer H, Fang F, Diercks T, Bizkarguenaga M, González-Valle B, Laín A, Sanz-Parra A, Coltell O, de Letona AL, Spraul M, Lu SC, Buguianesi E, Embade N, Anstee QM, Corella D, Mato JM, Millet O (2021) A molecular signature for the metabolic syndrome by urine metabolomics. Cardiovasc Diabetol 20(1):1–13

    Google Scholar 

  • Burton RJ, Albur M, Eberl M, Cuff SM (2019) Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med Inform Decis Mak 19(1):171

    PubMed  PubMed Central  Google Scholar 

  • Cardozo D, Kussen GMB, Cogo LL (2014) Research on antimicrobial residues activity in urine samples of hospitalized patients. Jornal Brasileiro De Patologia e Medicina Laboratorial 50:417–420

    CAS  Google Scholar 

  • Carraro S, Rezzi S, Reniero F, Héberger K, Giordano G, Zanconato S, Guillou C, Baraldi E (2007) Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med 175(10):986–990

    CAS  PubMed  Google Scholar 

  • Carroll MF, Temte JL (2000) Proteinuria in adults: a diagnostic approach. Am Fam Physician 62(6):1333–1340

    CAS  PubMed  Google Scholar 

  • Carvajal-Zarrabal O, Nolasco-Hipolito C, Aguilar-Uscanga MG, Santiesteban GM, Hayward-Jones PM, Barradas-Dermitz DM (2014) Effect of dietary intake of avocado oil and olive oil on biochemical markers of liver function in sucrose-fed rats. BioMed Res Int. https://doi.org/10.1155/2014/595479

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi J, Kim DY, Choue R, Lim H (2017) Effects of vitamin C supplementation on plasma and urinary vitamin C concentration in Korean women. Clin Nutr Res 6(3):198–205

    PubMed  PubMed Central  Google Scholar 

  • Chu CM, Lowder JL (2018) Diagnosis and treatment of urinary tract infections across age groups. Am J Obstet Gynecol 219(1):40–51

    PubMed  Google Scholar 

  • Cogswell ME, Maalouf J, Elliott P, Loria CM, Patel S, Bowman B (2015) Use of urine biomarkers to assess sodium intake: challenges and opportunities. Annu Rev Nutr 35:349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corns CM, Ludman CJ (1987) Some observations on the nature of the calcium-cresolphthalein complexone reaction and its relevance to the clinical laboratory. Ann Clin Biochem 24(4):345–351

    CAS  PubMed  Google Scholar 

  • Court JM, Davies HE, Ferguson R (1972) Diastix and ketodiastix a new semiquantitative test for glucose in urine. Med J Aust 1(11):525–528

    CAS  PubMed  Google Scholar 

  • Davenport M, Mach KE, Shortliffe LMD, Banaei N, Wang TH, Liao JC (2017) New and develo** diagnostic technologies for urinary tract infections. Nat Rev Urol 14(5):296–310

    PubMed  PubMed Central  Google Scholar 

  • Devillé WL, Yzermans JC, Van Duijn NP, Bezemer PD, Van Der Windt DA, Bouter LM (2004) The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy. BMC Urology 4(1):1–14

    Google Scholar 

  • Dolan VJ, Cornish NE (2013) Urine specimen collection: how a multidisciplinary team improved patient outcomes using best practices. Urol Nurs 33(5):249–256

    PubMed  Google Scholar 

  • English Oxford Living Dictionary, “Urine.” www.oed.com

  • Eun SJ, Kim J, Kim KH (2021) Applications of artificial intelligence in urological setting: a hopeful path to improved care. J Exerc Rehabilit 17(5):308

    Google Scholar 

  • Feng F, Ou Z, Zhang F, Chen J, Huang J, Wang J, Zuo H, Zeng J (2023) Artificial intelligence-assisted colorimetry for urine glucose detection towards enhanced sensitivity, accuracy, resolution, and anti-illuminating capability. Nano Res 16:1–8

    ADS  Google Scholar 

  • Fenton TR, Lyon AW, Eliasziw M, Tough SC, Hanley DA (2009) Meta-analysis of the effect of the acid-ash hypothesis of osteoporosis on calcium balance. J Bone Miner Res 24(11):1835–1840

    CAS  PubMed  Google Scholar 

  • Fiorentini D, Cappadone C, Farruggia G, Prata C (2021) Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients 13(4):1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flaucher M, Nissen M, Jaeger KM, Titzmann A, Pontones C, Huebner H, Fasching PA, Beckmann MW, Gradl S, Eskofier BM (2022) Smartphone-based colorimetric analysis of urine test strips for at-home prenatal care. IEEE J Transl Eng Health Med 10:1–9

    Google Scholar 

  • Fraile Navarro D, Sullivan F, Azcoaga-Lorenzo A, Santiago VH (2020) Point-of-care tests for urinary tract infections: protocol for a systematic review and meta-analysis of diagnostic test accuracy. BMJ Open 10(6):e033424

    PubMed  PubMed Central  Google Scholar 

  • Garcia-Perez I, Posma JM, Chambers ES, Nicholson JK, Mathers CJ, Beckmann M, Draper J, Holmes E, Frost G (2016) An analytical pipeline for quantitative characterization of dietary intake: application to assess grape intake. J Agric Food Chem 64(11):2423–2431

    CAS  PubMed  Google Scholar 

  • Goździkiewicz N, Zwolińska D, Polak-Jonkisz D (2022) The use of artificial intelligence algorithms in the diagnosis of urinary tract infections—a literature review. J Clin Med 11(10):2734

    PubMed  PubMed Central  Google Scholar 

  • Gökçe Ç, Gökçe Ö, Baydinç C, İlhan N, Alaşehirli E, Özküçük F, Taşçi M, Atikeler MK, Çelebi H, Arslan N (1991) Use of random urine samples to estimate total urinary calcium and phosphate excretion. Arch Intern Med 151(8):1587–1588

    PubMed  Google Scholar 

  • Graille M, Wild P, Sauvain JJ, Hemmendinger M, Canu IG, Hopf NB (2020) Urinary 8-OHdG as a biomarker for oxidative stress: a systematic literature review and meta-analysis. Int J Mol Sci 21(11):3743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2012) Point of care diagnostics: status and future. Anal Chem 84(2):487–515

    CAS  PubMed  Google Scholar 

  • Guy PA, Renouf M, Barron D, Cavin C, Dionisi F, Kochhar S, Rezzi S, Williamson G, Steiling H (2009) Quantitative analysis of plasma caffeic and ferulic acid equivalents by liquid chromatography tandem mass spectrometry. J Chromatogr B 877(31):3965–3974

    CAS  Google Scholar 

  • Harder R, Wei K, Vaze V, Stahl JE (2019) Simulation analysis and comparison of point of care testing and central laboratory testing. MDM Policy Pract 4(1):2381468319856306

    PubMed  PubMed Central  Google Scholar 

  • Hasandka A, Singh AR, Prabhu A, Singhal HR, Nandagopal MSG, Mani NK (2022) Paper and thread as media for the frugal detection of urinary tract infections (UTIs). Anal Bioanal Chem 414(2):847–865

    CAS  PubMed  Google Scholar 

  • He J, Wang S, Zhou M, Yu W, Zhang Y, He X (2015) Phytoestrogens and risk of prostate cancer: a meta-analysis of observational studies. World J Surg Oncol 13(1):1–11

    CAS  Google Scholar 

  • Heidt B, Siqueira WF, Eersels K, Diliën H, van Grinsven B, Fujiwara RT, Cleij TJ (2020) Point of care diagnostics in resource-limited settings: a review of the present and future of PoC in its most needed environment. Biosensors 10(10):133

    PubMed  PubMed Central  Google Scholar 

  • Hui Q, Pan Y, Yang Z (2020) Paper-based devices for rapid diagnostics and testing sewage for early warning of COVID-19 outbreak. Case Stud Chem Environ Eng 2:100064

    PubMed Central  Google Scholar 

  • Hummers-Pradier E, Ohse AM, Koch M, Heizmann WR, Kochen MM (2004) Urinary tract infection in men. Int J Clin Pharmacol Ther 42(7):360–366

    CAS  PubMed  Google Scholar 

  • İnce FD, Ellidağ HY, Koseoğlu M, Şimşek N, Yalçın H, Zengin MO (2016) The comparison of automated urine analyzers with manual microscopic examination for urinalysis automated urine analyzers and manual urinalysis. Pract Lab Med 5:14–20

    PubMed  PubMed Central  Google Scholar 

  • Jarrar AH, Stojanovska L, Apostolopoulos V, Ismail LC, Feehan J, Eo O, Ahmad AZ, Alnoaimi AA, Al Khaili LS, Allowch NH, Al Meqbaali FT, Souka U, Al Dhaheri AS (2020) Assessment of sodium knowledge and urinary sodium excretion among regions of the United Arab Emirates: a cross-sectional study. Nutrients 12(9):2747

    PubMed  PubMed Central  Google Scholar 

  • Kara PS, Erkoc R, Soyoral YU, Begenik H, Aldemir MN (2013) Correlation of 24-hour urine sodium, potassium and calcium measurements with spot urine. Eur J Gen Med 10(1):20–25

    CAS  Google Scholar 

  • Kim H, Awofeso O, Choi S, Jung Y, Bae E (2017) Colorimetric analysis of saliva–alcohol test strips by smartphone-based instruments using machine-learning algorithms. Appl Opt 56(1):84–92

    ADS  CAS  Google Scholar 

  • Kim SC, Cho YS (2022) Predictive system implementation to improve the accuracy of urine self-diagnosis with smartphones: application of a confusion matrix-based learning model through rgb semiquantitative analysis. Sensors 22(14):5445

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim I, Rajaraman S, Antani S (2019) Visual interpretation of convolutional neural network predictions in classifying medical image modalities. Diagnostics 9(2):38

    PubMed  PubMed Central  Google Scholar 

  • Kouri T, Fogazzi G, Gant V, Hallander H, Hofmann W, Guder WG (2000) European urinalysis guidelines. Scand J Clin Lab Invest 60(sup231):1–96

    Google Scholar 

  • Kumar S, Ko T, Chae Y, Jang Y, Lee I, Lee A, Shin S, Nam MH, Kim BS, Jun HS, Seo S (2023) Proof-of-concept: smartphone-and cloud-based artificial intelligence quantitative analysis system (SCAISY) for SARS-CoV-2-specific IgG antibody lateral flow assays. Biosensors 13(6):623

    PubMed  PubMed Central  Google Scholar 

  • Lepowsky E, Ghaderinezhad F, Knowlton S, Tasoglu S (2017) Paper-based assays for urine analysis. Biomicrofluidics 11(5):051501

    PubMed  PubMed Central  Google Scholar 

  • Levey AS, Coresh J, Greene T, Stevens LA, Zhang Y, Hendriksen S, Kusek JW, Van Lente F (2009) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 150(2):104–112

    Google Scholar 

  • Liang Y, Tang Z, Yan M, Liu J (2018) Object detection based on deep learning for urine sediment examination. Biocybern Biomed Eng 38(3):661–670

    Google Scholar 

  • Lloyd AJ, Beckmann M, Favé G, Mathers JC, Draper J (2011) Proline betaine and its biotransformation products in fasting urine samples are potential biomarkers of habitual citrus fruit consumption. Br J Nutr 106(6):812–824

    CAS  PubMed  Google Scholar 

  • Loh BY, Vuong NK, Chan S, Lau CT (2011) Robust classification of pH levels on a camera phone. Proc IMECS 1:600–604

    Google Scholar 

  • Luppa PB, Müller C, Schlichtiger A, Schlebusch H (2011) Point-of-care testing (POCT): current techniques and future perspectives. Trends Anal Chem 30(6):887–898

    CAS  Google Scholar 

  • Mann SJ, Gerber LM (2010) Estimation of 24-hour sodium excretion from spot urine samples. J Clin Hypertens 12(3):174–180

    CAS  Google Scholar 

  • Mannino RG, Myers DR, Tyburski EA, Caruso C, Boudreaux J, Leong T, Clifford GD, Lam WA (2018) Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nat Commun 9(1):4924

    ADS  PubMed  PubMed Central  Google Scholar 

  • Marrocco I, Altieri F, Peluso I (2017) Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid Med Cell Longev. https://doi.org/10.1155/2017/6501046

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsden J, Pickering D (2015) Urine testing for diabetic analysis. Community Eye Health 28(92):77

    PubMed  PubMed Central  Google Scholar 

  • Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whiteside GM (2008) Simple telemedicine for develo** regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80(10):3699–3707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maruvada P, Lampe JW, Wishart DS, Barupal D, Chester DN, Dodd D, Djoumbou-Feunang Y, Dorrestein PC, Dragsted LO, Draper J, Duffy LC, Dwyer JT, Emenaker NJ, Fiehn O, Gerszten RE, Hu FB, Karp RW, Klurfeld DM, Laughlin MR, Little AR, Lynch CJ, Moore SC, Nicastro HL, O’Brien DM, Ordovás JM, Osganian SK, Playdon M, Prentice R, Raftery D, Reisdorph N, Roche HM, Ross SA, Sang S, Scalbert A, Srinivas PR, Zeisel SH (2020) Perspective: dietary biomarkers of intake and exposure—exploration with omics approaches. Adv Nutr 11(2):200–215

    PubMed  Google Scholar 

  • Meisenberg G, Simmons WH (2004) Principles of medical biochemistry e-book. Elsevier Health Sciences, Netherlands, pp 124–138

    Google Scholar 

  • Mission Urinalysis Reagent Strip (Urine) Package Insert. Acon Laboratories, INC. Number: 1151145801

  • Mitchell R, Thomas SD, Langlois NE (2013) How sensitive and specific is urinalysis ‘dipstick’testing for detection of hyperglycaemia and ketosis? An audit of findings from coronial autopsies. Pathology 45(6):587–590

    CAS  PubMed  Google Scholar 

  • Mulryan C (2011) Urine testing through the use of dipstick analysis. Br J Healthcare Assist 5(5):234–239

    Google Scholar 

  • Mundt L, Shanahan K (2020) Graff’s textbook of urinalysis and body fluids. Jones & Bartlett Learning, Massachusetts

    Google Scholar 

  • Mutlu AY, Kılıç V, Özdemir GK, Bayram A, Horzum N, Solmaz ME (2017) Smartphone-based colorimetric detection via machine learning. Analyst 142(13):2434–2441

    ADS  CAS  PubMed  Google Scholar 

  • Naugler C, Church DL (2019) Automation and artificial intelligence in the clinical laboratory. Crit Rev Clin Lab Sci 56(2):98–110

    PubMed  Google Scholar 

  • Newman DJ, Mattock MB, Dawnay AB, Kerry S, McGuire A, Yaqoob M, Hitman GA, Hawke C (2005) Systematic review on urine albumin testing for early detection of diabetic complications. Health Technol Assess 9(30):iii–vi

    CAS  PubMed  Google Scholar 

  • O’Toole JF (2011) Disorders of calcium metabolism. Nephron. Physiology 118(1):22-p27

    Google Scholar 

  • Pai NP, Vadnais C, Denkinger C, Engel N, Pai M (2012) Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low-and middle-income countries. PLOS Med. https://doi.org/10.1371/journal.pmed.1001306

    Article  PubMed  PubMed Central  Google Scholar 

  • Papava V, Didbaridze T, Zaalishvili Z, Gogokhia N, Maziashvili G (2022) The role of urinary nitrite in predicting bacterial resistance in urine culture analysis among patients with uncomplicated urinary tract infection. Cureus. https://doi.org/10.7759/cureus.26032

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J (2022) Lateral flow immunoassay reader technologies for quantitative point-of-care testing. Sensors 22(19):7398

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Patki P, Craggs M, Shah J, Maher A, Lindon J, Holmes E, Cloarec O, Nicholson J (2007) 1869: nuclear magnetic resonance based metabonomic investigation of semen, urine and plasma metabolite profiles in healthy volunteers and men with spinal cord injury. J Urol 177(4S):620–620

    Google Scholar 

  • Penders J, Fiers T, Delanghe JR (2002) Quantitative evaluation of urinalysis test strips. Clin Chem 48(12):2236–2241

    CAS  PubMed  Google Scholar 

  • Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    CAS  PubMed  Google Scholar 

  • Picó C, Serra F, Rodríguez AM, Keijer J, Palou A (2019) Biomarkers of nutrition and health: new tools for new approaches. Nutrients 11(5):1092

    PubMed  PubMed Central  Google Scholar 

  • Posma JM, Garcia-Perez I, Heaton JC, Burdisso P, Mathers JC, Draper J, Lewis M, Lindon JC, Frost G, Holmes E, Nicholson JK (2017) Integrated analytical and statistical two-dimensional spectroscopy strategy for metabolite identification: application to dietary biomarkers. Anal Chem 89(6):3300–3309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Q (2018) Dietary influence on body fluid acid-base and volume balance: the deleterious “norm” furthers and cloaks subclinical pathophysiology. Nutrients 10(6):778

    PubMed  PubMed Central  Google Scholar 

  • Qian X, **gying H, **an S, Yuqing Z, Lili W, Baorui C, Wei G, Yefeng Z, Qiang Z, Chunyan C, Cheng B, Kai M, Yi Q (2022) The effectiveness of artificial intelligence-based automated grading and training system in education of manual detection of diabetic retinopathy. Front Public Health 10:1025271

    PubMed  PubMed Central  Google Scholar 

  • Renouf M, Marmet C, Guy P, Fraering AL, Longet K, Moulin J, Enslen M, Barron D, Cavin C, Dionisi F, Rezzi S, Kochhar S, Steiling H, Williamson G (2010) Nondairy creamer, but not milk, delays the appearance of coffee phenolic acid equivalents in human plasma. J Nutr 140(2):259–263

    CAS  PubMed  Google Scholar 

  • Rifai N (2017) Tietz textbook of clinical chemistry and molecular diagnostics, 6th edn. Elsevier Health Sciences, Netherlands, pp 371, 639, 719

    Google Scholar 

  • Rinehart BK, Terrone DA, Larmon JE, Perry KG, Martin RW, Martin JN (1999) A 12-hour urine collection accurately assesses proteinuria in the hospitalized hypertensive gravida. J Perinatol 19(8):556–558

    CAS  PubMed  Google Scholar 

  • Rosen RJ, Bomback AS (2021) Acute hyponatremia after a religious fast. AACE Clin Case Rep 7(4):236–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe DJF, Dawnay A, Watts G (1990) Microalbuminuria in diabetes mellitus: review and recommendations for the measurement of albumin in urine. Ann Clin Biochem 27(4):297–312

    CAS  PubMed  Google Scholar 

  • Ryan D, Robards K, Prenzler PD, Kendall M (2011) Recent and potential developments in the analysis of urine: a review. Anal Chim Acta 684(1–2):17–29

    CAS  Google Scholar 

  • Scherstén B, Fritz H (1967) Subnormal levels of glucose in urine: a sign of urinary tract infection. JAMA 201(12):949–952

    PubMed  Google Scholar 

  • Schiefermeier-Mach N, Egg S, Erler J, Hasenegger V, Petra Rust, König J, Purtscher E (2020) Electrolyte intake and major food sources of sodium, potassium, calcium, and magnesium among a population in western Austria. Nutrients 12(7):1956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senger H, Baasch G (1968) Eine schnelle photometrische Bestimmung von Ascorbinsäure im Urin mit 2,6-Dichlorphendophenol (Tillmans Reagens) [ Rapid photometric determination of urinary ascorbic acid using 2,6-dichlorodiphenolindophenyl (Tillman's reagent)]. Dtsch Gesundheitsw. 23(7):303–6. German

  • Simerville JA, Maxted WC, Pahira JJ (2005) Urinalysis: a comprehensive review. Am Fam Physician 71(6):1153–1162

    PubMed  Google Scholar 

  • Sinclair E, Trivedi DK, Sarkar D, Walton-Doyle C, Milne J, Kunath T, Rijs AM, de Bie RMA, Goodacre R, Silverdale M, Barran P (2021) Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat Commun 12(1):1–9

    Google Scholar 

  • Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyás B (2020) 3D deep learning on medical images: a review. Sensors 20(18):5097

    ADS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Hasan MR, Jain A, Pilloton R, Narang J (2023) LFA: the mysterious paper-based biosensor: a futuristic overview. Chemosensors 11(4):255

    CAS  Google Scholar 

  • Singhal SR, Ghalaut V, Lata S, Madaan H, Kadian V, Sachdeva A (2014) Correlation of 2 hour, 4 hour, 8 hour and 12 hour urine protein with 24 hour urinary protein in preeclampsia. J Family Reprod Health 8(3):131

    Google Scholar 

  • St John A, Price CP (2014) Existing and emerging technologies for point-of-care testing. Clin Biochem Rev 35(3):155–67

    PubMed  PubMed Central  Google Scholar 

  • Stauss M, Keevil B, Woywodt A (2022) Point-of-care testing: home is where the lab is. Kidney360 3(7):1285

    PubMed  PubMed Central  Google Scholar 

  • Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, van der Ouderaa F, Bingham S, Cross AJ, Nicholson JK (2006) Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res 5(10):2780–2788

    CAS  PubMed  Google Scholar 

  • Sun Q, Bertrand KA, Franke AA, Rosner B, Curhan GC, Willett WC (2017) Reproducibility of urinary biomarkers in multiple 24-h urine samples. Am J Clin Nutr 105(1):159–168

    CAS  PubMed  Google Scholar 

  • Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24(2):47–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Şen M, Yüzer E, Doğan V, Avcı İ, Ensarioğlu K, Aykaç A, Kaya N, Can M, Kılıç V (2022) Colorimetric detection of H2O2 with Fe3O4@ Chi nanozyme modified µPADs using artificial intelligence. Microchim Acta 189(10):1–11

    Google Scholar 

  • Taie ES (2020) Artificial intelligence as an innovative approach for investment in the future of healthcare in Egypt. Way 11:12

    Google Scholar 

  • Tehrani F, Reiner L, Bavarian B (2015) Rapid prototy** of a high sensitivity graphene based glucose sensor strip. PLoS ONE 10(12):e0145036

    PubMed  PubMed Central  Google Scholar 

  • Thakur R, Maheshwari P, Datta SK, Dubey SK, Shakher C (2020) Machine learning-based rapid diagnostic-test reader for albuminuria using smartphone. IEEE Sens J 21(13):14011–14026

    ADS  Google Scholar 

  • Theodorou C, Leatherby R, Dhanda R (2021) Function of the nephron and the formation of urine. Anaesth Intensive Care Med 22(7):434–438

    Google Scholar 

  • Tighe P (1997) Improving the quality of urine strip testing: the Clinitek 50 urine chemistry analyser. Euro Clin Lab p 16–20

  • Tong H, Cao C, You M, Han S, Liu Z, **ao Y, He W, Liu C, Peng P, Xue Z, Gong Y, Yao C, Xu F (2022) Artificial intelligence-assisted colorimetric lateral flow immunoassay for sensitive and quantitative detection of COVID-19 neutralizing antibody. Biosens Bioelectron 213:114449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toora BD, Rajagopal G (2002) Measurement of creatinine by Jaffe’s reaction–determination of concentration of sodium hydroxide required for maximum color development in standard, urine and protein free filtrate of serum. Indian J Exp Biol 40(3):352–354 (PMID: 12635710)

    CAS  PubMed  Google Scholar 

  • Tsuji T, Fukuwatari T, Sasaki S, Shibata K (2010) Urinary excretion of vitamin B1, B2, B6, niacin, pantothenic acid, folate, and vitamin C correlates with dietary intakes of free-living elderly, female Japanese. Nutr Res 30(3):171–178

    CAS  PubMed  Google Scholar 

  • Velikova M, Smeets RL, van Scheltinga JT, Lucas PJF, Spaanderman M (2014) Smartphone-based analysis of biochemical tests for health monitoring support at home. Healthcare Technol Lett 1(3):92–97

    Google Scholar 

  • Wagner CA, Mohebbi N (2010) Urinary pH and stone formation. J Nephrol 23(16):S165–S169

    PubMed  Google Scholar 

  • Wainberg M, Merico D, Delong A, Frey BJ (2018) Deep learning in biomedicine. Nat Biotechnol 36(9):829–838

    CAS  PubMed  Google Scholar 

  • Walker HK, Hall WD, Hurst JW (1990) Clinical methods: the history, physical, and laboratory examinations, 3rd edn. Butterworths, Boston, pp 658–661

    Google Scholar 

  • Wang X, Chowdhury JR, Chowdhury NR (2006) Bilirubin metabolism: applied physiology. Curr Paediatr 16(1):70–74

    Google Scholar 

  • Waterfield T, Foster S, Platt R, Barrett MJ, Durnin S, Maney JA, Roland D, McFetridge L, Mitchell H, Umana E, Lyttle MD (2022) Diagnostic test accuracy of dipstick urinalysis for diagnosing urinary tract infection in febrile infants attending the emergency department. Arch Dis Child 107(12):1095–1099

    PubMed  Google Scholar 

  • Watson CJ (1958) Color reaction of bilirubin with sulfuric acid: a direct diazo-reacting bilirubin sulfate. Science 128(3316):142–143

    ADS  CAS  PubMed  Google Scholar 

  • Wiesner-Hanks T, Stewart EL, Kaczmar N, DeChant C, Wu H, Nelson RJ, Lipson H, Gore MA (2018) Image set for deep learning: field images of maize annotated with disease symptoms. BMC Res Notes 11(1):1–3

    Google Scholar 

  • Wilson LA (2005) Urinalysis. Nurs Stand 19(35):51–55

    PubMed  Google Scholar 

  • Wilson T, Garcia-Perez I, Posma JM, Lloyd AJ, Chambers ES, Tailliart K, Zubair H, Beckmann M, Mathers JC, Holmes E, Frost G, Draper J (2019) Spot and cumulative urine samples are suitable replacements for 24-hour urine collections for objective measures of dietary exposure in adults using metabolite biomarkers. J Nutr 149(10):1692–1700

    PubMed  Google Scholar 

  • **a Y, Hu J, Zhao S, Tao L, Li Z, Yue T, Kong J (2022) Build-in sensors and analysis algorithms aided smartphone-based sensors for point-of-care tests. Biosens Bioelectron X 11:100195

    CAS  Google Scholar 

  • Yamashita R, Nishio M, Do RK G, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights into imaging 9:611–629

  • Yao L, Zhang H, Zhang M, Chen X, Zhang J, Huang J, Zhang L (2021) Application of artificial intelligence in renal disease. Clin eHealth 4:54–61

    Google Scholar 

  • Zamanzad B (2009) Accuracy of dipstick urinalysis as a screening method for detection of glucose, protein, nitrites and blood. EMHJ-East Mediterr Health J 15(5):1323–1328

    CAS  Google Scholar 

  • Zhang A, Sun H, Wu X, Wang X (2012) Urine metabolomics. Clin Chim Acta 414:65–69

    CAS  PubMed  Google Scholar 

  • Zhang L, **ao H, Wong DT (2009) Salivary biomarkers for clinical applications. Mol Diagn Ther 13(4):245–259

    CAS  PubMed  Google Scholar 

  • Zhao L, Lediju Bell MA (2022) A review of deep learning applications in lung ultrasound imaging of COVID-19 patients. BME Front. https://doi.org/10.34133/2022/9780173

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was not funded.

Author information

Authors and Affiliations

Authors

Contributions

HC contributed to Conceptualization, writing—original draft preparation; BBC, CG, GÇ, MT contributed to review and editing. All authors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Haluk Çelik or Balım Bengisu Caf.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, H., Caf, B.B., Geyik, C. et al. Enhancing urinalysis with smartphone and AI: a comprehensive review of point-of-care urinalysis and nutritional advice. Chem. Pap. 78, 651–664 (2024). https://doi.org/10.1007/s11696-023-03137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-03137-z

Keywords

Navigation