Log in

First-principles calculations of physical properties of the tungsten dichalcogenides (WSe2 and WTe2)

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, we present a DFT approach to the tungsten chalcogenides WSe2 and WTe2 physical properties by using the “WIEN2k” package. The lattice constants of the studied compounds are calculated in the framework of the GGA-PBE approximation. In particular, we studied and discussed the magnetic properties of the WX2 compounds (X = Se and Te). We calculated and explained the band gap values, the elastic constants, and the electronic properties of these compounds. In addition, the dielectric tensor, the optical conductivity, the refractive index, and the absorption have been illustrated. On the other hand, the thermodynamic and thermoelectric properties of the tungsten chalcogenides WSe2 and WTe2 have been presented. We concluded that the WX2 (X = Se and Te) compounds exhibit semiconductor properties with the energy gap values 1.046 and 0.542 eV for WSe2 and WTe2, respectively. Additionally, the computed WTe2 and WSe2 parameters were compared to those found in the literature. Good deals have been discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cunningham G, Lotya M, Cucinotta CS, Sanvito S, Bergin SD, Menzel R, Shaffer MS, Coleman JN (2012) Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6:3468

    Article  CAS  PubMed  Google Scholar 

  • Duan XD, Wang C, Shaw JC et al (2014) Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nanotechnol 9:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Guo SD, Wang Y (2017) Small compressive strain-induced semiconductor–metal transition and tensile strain-enhanced thermoelectric properties in monolayer PtTe2. Semicond Sci Technol 32:055004

    Article  Google Scholar 

  • Guo H, Lu N, Wang L, Wu X, Zeng XC (2014) Tuning electronic and magnetic properties of early transition-metal dichalcogenides via tensile strain. J Phys Chem C 118:7242

    Article  CAS  Google Scholar 

  • Kang J, Tongay S, Zhou J, Li J, Wu J (2013) Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett 102:012111

    Article  Google Scholar 

  • Klein A, Tiefenbacher S, Eyert V, Pettenkofer C, Jaegermann W (2002) Electronic band structure of single-crystal and single-layer WS2: influence of interlayer van der Waals interactions. Phys Rev B. https://doi.org/10.1103/PhysRevB.64.205416

    Article  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented wave method. Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  • Li J, Medhekar NV, Shenoy VB (2013) Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides. J Phys Chem C 117:15842

    Article  CAS  Google Scholar 

  • Li B, **ng T, Zhong MZ et al (2017) A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun 8:1958

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Sun GZ, Chen P et al (2019) High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Res 12:339–344

    Article  Google Scholar 

  • Liua J, Liua H, Wang J et al (2019) Optical and electronic properties of dichalcogenides WX2 (X=S, Se, and Te) monolayers under biaxial strain. Phys B 568:18–24

    Article  Google Scholar 

  • Lv YY, Cao L, Li X et al (2017) Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals. Sci Rep 7:44587. https://doi.org/10.1038/srep44587.PMID:28294191;PMCID:PMC5353676

    Article  PubMed  PubMed Central  Google Scholar 

  • Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71. https://doi.org/10.1016/j.cpc.2006.03.007

    Article  CAS  Google Scholar 

  • Mak KF, Shan J (2016) Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides Nat. Photon 10:216

    Article  CAS  Google Scholar 

  • Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Article  PubMed  Google Scholar 

  • Martin RM (1972) Relation between elastic tensors of wurtzite and zinc-blende structure materials. Phys Rev B 6(12):4546

    Article  CAS  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  • Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Dubl Philos Mag J Sci 45:823

    Article  CAS  Google Scholar 

  • Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147

    Article  CAS  PubMed  Google Scholar 

  • Rano BB, Syed IM, Naqib SH (2020) elastic, electronic, bonding and optical properties of WTe2 Weyl semimetal comparative investigation with MoTe2 from first principals. Res Phys 19:103639

    Google Scholar 

  • Rehman J, Ali R, Ahmad N et al (2019) theoretical investigation of stain-engineeed WSe2 monolayers as anode material for Li-ion batteries. J Alloys Compd 804:370–375

    Article  CAS  Google Scholar 

  • Ren K, Sun M, Luo Y et al (2019) First-principle study of electronic and optical properties of tow-dimensional materials-based heterostructures based on transition metal dichalcogenides and boron phosphide. Appl Surf Sci 476:70–75

    Article  CAS  Google Scholar 

  • Ross JS, Klement P, Jones AM et al (2014) Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat Nanotechnol 9:268–272

    Article  CAS  PubMed  Google Scholar 

  • Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yu L, Lee Y-H, Shi Y, Hsu A, Chin ML, Li L-J, Dubey M, Kong JG, Palacios T (2012a) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674

    Article  CAS  PubMed  Google Scholar 

  • Wang QH, Kalantar-Zadeh K, Kis A et al (2012b) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  CAS  PubMed  Google Scholar 

  • Wang J, **e F, Cao XH et al (2017) Excellent thermoelectric properties in monolayer WSe2 nanoribbons due to ultralow phonon thermal conductivity. Sci Rep 7:41418. https://doi.org/10.1038/srep41418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Chen P, Duan X et al (2017) Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357:788–792

    Article  CAS  PubMed  Google Scholar 

  • Zhao WJ, Ghorannevis Z, Chu LQ et al (2013) Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7:791–797

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bahmad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabar, A., Selmani, Y., Bahmad, L. et al. First-principles calculations of physical properties of the tungsten dichalcogenides (WSe2 and WTe2). Chem. Pap. 78, 483–492 (2024). https://doi.org/10.1007/s11696-023-03104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-03104-8

Keywords

Navigation