Log in

Highly efficient and selective removal of copper from low pH nickel Watts solution through hydrogen sulfide

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Cu-removal operation is one of the vital purifying processes for the nickel electrolysis anolyte. Different from the nickel concentrate-activated anode slime-sulfurous acid, NiS and MnS, hydrogen sulfide (H2S) introduced less metal impurities into the systems. And the precipitation theory is the main principles of nickel purification method utilizing H2S in removing Cu from the anolyte rather than these replacement reactions. The Solubility Product Constant (Ksp) of CuS is lower than NiS, which indicates that the precipitate of CuS can be highly efficiently and selectively formed and easily removed from the nickel anolyte. In this research, the effects of mole ratio of [H2S]/[Cu], pH, temperature, potential–pH diagrams and the precipitates of metal sulfides were investigated. The experimental results show that the H2S was a potential successor as the highly efficient and selective Cu-removal reagent. The concentration of Cu2+ in Watts can be reduced to lower than 0.002 g/L, and the mass ratios of Cu/Ni in this precipitate are larger than 15 in the low pH state (1.0–1.5). S, CuS, Cu2S, NiS, NiS2 or Ni3S2 may be presented and coexisted in the region that concluded from the analysis of potential–pH diagram. The XRD analysis of precipitates indicated that it was composed by CuS and NiSO4·6H2O. The XPS measurement shows that the valence states of Cu and Ni are Cu2+ and Cu+ and Ni2+, respectively. The valence state of S includes the S2−, Sx2− and SO42− states. Therefore, H2S can highly efficient and selective remove the Cu2+ from the low pH nickel Watts solution, and which can be applied on the nickel anolyte purification in the future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

This work was financially supported by LICP Cooperation Foundation for Young Scholars (HZJJ20-09), Lanzhou Chengguan District Science and Technology Planning Project (2021-5-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aofeng Lu or Yong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Li, Y., Zhang, A. et al. Highly efficient and selective removal of copper from low pH nickel Watts solution through hydrogen sulfide. Chem. Pap. 77, 6707–6715 (2023). https://doi.org/10.1007/s11696-023-02970-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-02970-6

Keywords

Navigation