Log in

Core–shell Ag-dual template molecularly imprinted composite for detection of carbamate pesticide residues

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Carbamate pesticides are popularly used in agriculture due to their relatively low toxicity and their more degradable nature compared to organophosphates. Resultant residues pose a threat to human and animal health, aquatic systems and wildlife. Carbaryl and thiodicarb are used to control pests in a variety of agricultural crops. Monitoring the level of these pesticides in the environment is crucial in ensuring environmental safety. Multi-template imprinted polymers combined with surface enhanced Raman spectroscopy (SERS) are attractive for sensitive and effective multiple analyte detection for application in pesticide residue studies in environmental matrices. A core–shell Ag-dual template molecularly imprinted polymer (MIP) composite was synthesized and evaluated in this study. Computational design was used to study intermolecular interactions in the pre-polymerization mixture between methylacryamide (MAM) (functional monomer) and the templates carbaryl (CBL) and thiodicarb (TDC). The interaction between the computer simulated template-functional monomer complexes was evaluated by examining the hydrogen bonds to provide insights on the observed binding performance of the dual imprinted polymer. The MIP was then synthesized and its binding properties towards CBL and TDC investigated experimentally. More so, we compared the performance of the mono-template MIP materials and the dual-template MIP material in detection of the templates. The experimental results corroborate the computer simulation results and reveal that CBL has higher adsorption capacity as supported by higher number of hydrogen bonds in the template monomer complex. Therefore, the study presents a cost-effective approach that utilizes a dual-template imprinted polymer for detection of carbamate pesticide residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

We are grateful for the financial support of this research from the National Natural Science Foundation of China (51779065), and the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (2019DX11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **n Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 441 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheshari, E.C., Ren, X. & Li, X. Core–shell Ag-dual template molecularly imprinted composite for detection of carbamate pesticide residues. Chem. Pap. 75, 3679–3693 (2021). https://doi.org/10.1007/s11696-021-01594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01594-y

Keywords

Navigation