Log in

Correlation Between Bariatric Surgery and the Risk of Multiple Myeloma: Results from an Evidence-Based Strategy

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Objective

We conducted a meta-analysis of current literature to assess whether bariatric surgery(BS) has a positive effect on reducing the risk of multiple myeloma(MM).

Methods

Relevant studies meeting the criteria were systematically reviewed using databases such as PubMed, Web of Science, Embase (Ovid platform), MEDLINE, and the Cochrane Library. The meta-analysis utilized hazard ratios (RR) and 95% confidence intervals (CI) to analyze the correlation between BS and the risk of MM. STATA software (version 12.0) was employed for the meta analysis.

Results

The meta-analysis included 10 eligible studies, involving 2,452,503 patients with obesity. The results demonstrated a significant reduction in the risk of multiple myeloma in patients with obesity after bariatric surgery compared to non-surgical patients with obesity (RR = 0.51, 95%CI: 0.31–0.84). Subgroup analyses revealed a decreased probability of develo** multiple myeloma in European patients with obesity and North American patients with obesity who underwent bariatric surgery. Studies with a sample size greater than or equal to 100,000 indicated a significantly reduced risk of multiple myeloma in patients with obesity undergoing bariatric surgery compared to the non-surgical group (RR: 0.45, 95%CI: 0.23–0.88, P < 0.02). Two publications before 2010 showed no significant difference in the incidence of multiple myeloma between the surgical and non-surgical groups (RR: 0.61, 95% CI: 0.14–2.63, P = 0.504), while publications after 2010 demonstrated a reduced incidence in the surgical group (RR: 0.51, 95% CI: 0.30–0.86, P = 0.012).

Conclusion

Our meta-analysis results suggest a reduced risk of multiple myeloma in patients with obesity following bariatric surgery.

PROSPERO Registration

CRD42023485668

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Statement All data generated or analyzed during this study are included in this article. Further inquiries can be directed to the corresponding author.

References

  1. Dragano NRV, Fernø J, Cet D, et al. Reprint of: recent updates on obesity treatments: Available drugs and future directions. Neuroscience. 2020;447:191–215.

    Article  CAS  PubMed  Google Scholar 

  2. Bhaskaran K, Douglas I, Forbes H, et al. Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5·24 million UK adults. Lancet. 2014;384(9945):755–65.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lauby-Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancer-viewpoint of the IARC working group. N Engl J Med. 2016;375(8):794–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. van de Donk N, Pawlyn C, Yong KL. Multiple myeloma. Lancet. 2021;397(10272):410–27.

    Article  PubMed  Google Scholar 

  5. Huang J, Chan SC, Lok V, et al. The epidemiological landscape of multiple myeloma: a global cancer registry estimate of disease burden, risk factors, and temporal trends. Lancet Haematol. 2022;9(9):e670–e7.

    Article  CAS  PubMed  Google Scholar 

  6. Avgerinos KI, Spyrou N, Mantzoros CS, et al. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism. 2019;92:121–35.

    Article  CAS  PubMed  Google Scholar 

  7. Ligibel JA, Alfano CM, Courneya KS, et al. American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol. 2014;32(31):3568–74.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carson KR, Bates ML, Tomasson MH. The skinny on obesity and plasma cell myeloma: a review of the literature. Bone Marrow Transplant. 2014;49(8):1009–15.

    Article  CAS  PubMed  Google Scholar 

  9. Parikh R, Tariq SM, Marinac CR, et al. A comprehensive review of the impact of obesity on plasma cell disorders. Leukemia. 2022;36(2):301–14.

    Article  CAS  PubMed  Google Scholar 

  10. Morris EV, Suchacki KJ, Hocking J, et al. Myeloma cells Down-regulate adiponectin in bone marrow adipocytes via TNFalpha. J Bone Miner Res. 2020;35(5):942–55.

    Article  CAS  PubMed  Google Scholar 

  11. Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122(11):4243–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Psaltopoulou T, Ntanasis-Stathopoulos I, Tsilimigras DI, et al. Micronutrient intake and risk of hematological malignancies in adults: a systematic review and meta-analysis of cohort studies. Nutr Cancer. 2018;70(6):821–39.

    Article  CAS  PubMed  Google Scholar 

  13. Psaltopoulou T, Sergentanis TN, Ntanasis-Stathopoulos I, et al. Anthropometric characteristics, physical activity and risk of hematological malignancies: A systematic review and meta-analysis of cohort studies. Int J Cancer. 2019;145(2):347–59.

    Article  CAS  PubMed  Google Scholar 

  14. Sergentanis TN, Ntanasis-Stathopoulos I, Tzanninis IG, et al. Meat, fish, dairy products and risk of hematological malignancies in adults - a systematic review and meta-analysis of prospective studies. Leuk Lymphoma. 2019;60(8):1978–90.

    Article  PubMed  Google Scholar 

  15. Perdomo CM, Cohen RV, Sumithran P, et al. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet. 2023;401(10382):1116–30.

    Article  PubMed  Google Scholar 

  16. Colquitt JL, Pickett K, Loveman E, et al. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014(8):CD003641.

  17. Phillips BT, Shikora SA. The history of metabolic and bariatric surgery: development of standards for patient safety and efficacy. Metabolism. 2018;79:97–107.

    Article  CAS  PubMed  Google Scholar 

  18. Talebpour M, Sadid D, Talebpour A, et al. Comparison of short-term effectiveness and postoperative complications: laparoscopic gastric plication vs laparoscopic sleeve gastrectomy. Obes Surg. 2018;28(4):996–1001.

    Article  PubMed  Google Scholar 

  19. Brito H, Santos AC, Preto J, et al. Obesity and cancer: The profile of a population who underwent bariatric surgery. Obes Surg. 2021;31(11):4682–91.

    Article  PubMed  Google Scholar 

  20. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. J Clin Epidemiol. 2021;134:178–89.

    Article  PubMed  Google Scholar 

  21. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.

    Article  CAS  PubMed  Google Scholar 

  22. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

    Article  PubMed  Google Scholar 

  23. Khalid SI, Maasarani S, Wiegmann J, et al. Association of bariatric surgery and risk of cancer in patients with morbid obesity. Ann Surg. 2022;275(1):1–6.

    Article  PubMed  Google Scholar 

  24. Aminian A, Wilson R, Al-Kurd A, et al. Association of bariatric surgery with cancer risk and mortality in adults with obesity. JAMA. 2022;327(24):2423–33.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chittajallu V, Mansoor E, Perez J, et al. Association of Bariatric Surgery with risk of incident obesity-associated malignancies: a multi-center population-based study. Obes Surg. 2023;33(12):4065–9.

    Article  PubMed  Google Scholar 

  26. Rustgi VK, Li Y, Gupta K, et al. Bariatric surgery reduces cancer risk in adults with nonalcoholic fatty liver disease and severe obesity. Gastroenterology. 2021;161(1):171–84.e10.

    Article  CAS  PubMed  Google Scholar 

  27. Christou NV, Lieberman M, Sampalis F, et al. Bariatric surgery reduces cancer risk in morbidly obese patients. Surg Obes Relat Dis. 2008;4(6):691–5.

    Article  PubMed  Google Scholar 

  28. Adams TD, Stroup AM, Gress RE, et al. Cancer incidence and mortality after gastric bypass surgery. Obesity (Silver Spring). 2009;17(4):796–802.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tao W, Santoni G, von Euler-Chelpin M, et al. Cancer risk after bariatric surgery in a cohort study from the five Nordic countries. Obes Surg. 2020;30(10):3761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tsui ST, Yang J, Zhang X, et al. Development of cancer after bariatric surgery. Surg Obes Relat Dis. 2020;16(10):1586–95.

    Article  PubMed  Google Scholar 

  31. Lazzati A, Epaud S, Ortala M, et al. Effect of bariatric surgery on cancer risk: results from an emulated target trial using population-based data. Br J Surg. 2022;109(5):433–8.

    Article  PubMed  Google Scholar 

  32. Adams LB, Chang C, Pope J, et al. Randomized, prospective comparison of ursodeoxycholic acid for the prevention of gallstones after sleeve gastrectomy. Obes Surg. 2016;26(5):990–4.

    Article  PubMed  Google Scholar 

  33. Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res. 2016;118(11):1723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tentolouris A, Ntanasis-Stathopoulos I, Terpos E. Obesity and multiple myeloma: emerging mechanisms and perspectives. Semin Cancer Biol. 2023;92:45–60.

    Article  CAS  PubMed  Google Scholar 

  35. Wilson RB, Lathigara D, Kaushal D. Systematic review and meta-analysis of the impact of bariatric surgery on future cancer risk. Int J Mol Sci. 2023;24(7):6192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clapp B, Portela R, Sharma I, et al. Risk of non-hormonal cancer after bariatric surgery: meta-analysis of retrospective observational studies. Br J Surg. 2022;110(1):24–33.

    Article  PubMed  Google Scholar 

  37. Eisenberg D, Shikora SA, Aarts E, et al. 2022 American Society of Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO) indications for metabolic and bariatric surgery. Obes Surg. 2023;33(1):3–14.

    Article  PubMed  Google Scholar 

  38. Benaiges D, Goday A, Pedro-Botet J, et al. Bariatric surgery: to whom and when? Minerva Endocrinol. 2015;40(2):119–28.

    CAS  PubMed  Google Scholar 

  39. Kleinstern G, Larson DR, Allmer C, et al. Body mass index associated with monoclonal gammopathy of undetermined significance (MGUS) progression in Olmsted County, Minnesota. Blood Cancer J. 2022;12(4):67.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Went M, Cornish AJ, Law PJ, et al. Search for multiple myeloma risk factors using Mendelian randomization. Blood Adv. 2020;4(10):2172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bullwinkle EM, Parker MD, Bonan NF, et al. Adipocytes contribute to the growth and progression of multiple myeloma: unraveling obesity related differences in adipocyte signaling. Cancer Lett. 2016;380(1):114–21.

    Article  CAS  PubMed  Google Scholar 

  42. Fairfield H, Dudakovic A, Khatib CM, et al. Myeloma-modified adipocytes exhibit metabolic dysfunction and a senescence-associated secretory phenotype. Cancer Res. 2021;81(3):634–47.

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Meng Y, Yu X. The unique metabolic characteristics of bone marrow adipose tissue. Front Endocrinol (Lausanne). 2019;10:69.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Giannakoulas N, Ntanasis-Stathopoulos I, Terpos E. The role of marrow microenvironment in the growth and development of malignant plasma cells in multiple myeloma. Int J Mol Sci. 2021;22(9):4462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fairfield H, Condruti R, Farrell M, et al. Development and characterization of three cell culture systems to investigate the relationship between primary bone marrow adipocytes and myeloma cells. Front Oncol. 2022;12:912834.

    Article  CAS  PubMed  Google Scholar 

  46. Mondello P, Cuzzocrea S, Navarra M, et al. Bone marrow micro-environment is a crucial player for myelomagenesis and disease progression. Oncotarget. 2017;8(12):20394–409.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cui Y, Wang F, Zhang D, et al. Estrogen-responsive gene MAST4 regulates myeloma bone disease. J Bone Miner Res. 2022;37(4):711–23.

    Article  CAS  PubMed  Google Scholar 

  48. Morris EV, Edwards CM. Adipokines, adiposity, and bone marrow adipocytes: dangerous accomplices in multiple myeloma. J Cell Physiol. 2018;233(12):9159–66.

    Article  CAS  PubMed  Google Scholar 

  49. Bieghs L, Johnsen HE, Maes K, et al. The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget. 2016;7(30):48732–52.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lazaris V, Hatziri A, Symeonidis A, Kypreos KE. The lipoprotein transport system in the pathogenesis of multiple myeloma: advances and challenges. Front Oncol. 2021;11:638288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Natural Science Foundation of Gansu Province (grant number 23JRRA1317).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenglou Zhu or Mingxu Da.

Ethics declarations

Informed Consent

Informed Consent does not apply.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

No conflict of interest.

Studies with Human Participants

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points.

• Bariatric surgery has an impact on cancer risk in obese individuals.

• Bariatric surgery has a potentially protective effect in reducing the risk of future MM in patients with obesity.

• Overall, bariatric surgery has resulted in a relative reduction in the incidence of MM of approximately 50%.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhao, T., Zhu, C. et al. Correlation Between Bariatric Surgery and the Risk of Multiple Myeloma: Results from an Evidence-Based Strategy. OBES SURG 34, 1061–1072 (2024). https://doi.org/10.1007/s11695-024-07059-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-024-07059-x

Keywords

Navigation