Log in

The Effect of Obesity on Anti-Xa Concentrations in Bariatric Patients

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Morbidly obese patients are at increased risk to develop venous thromboembolism (VTE), especially after bariatric surgery. Adequate postoperative thrombosis prophylaxis is of utmost importance. It is assumed that morbidly obese patients need higher doses of low molecular weight heparin (LMWH) compared to normal-weight patients; however, current guidelines based on relative efficacy in obese populations are lacking.

Objectives

First, we will evaluate the relationship between body weight descriptors and anti-Xa activity prospectively. Second, we will determine the dose-linearity of LMWH in morbidly obese patients.

Setting

This study was performed in a general hospital specialized in bariatric surgery.

Methods

Patients were scheduled for a Roux-en-Y gastric bypass with a total bodyweight (TBW) of ≥ 140 kg. Patients (n = 50, 64% female) received a daily postoperative dose of 5700 IU of nadroparin for 4 weeks. Anti-Xa activity was determined 4 h after the last nadroparin administration. To determine the dose linearity, anti-Xa was determined following a preoperative dose of 2850 IU nadroparin in another 50 patients (52%).

Results

TBW of the complete group was 148.5 ± 12.6 kg. Mean anti-Xa activity following 5700 IU nadroparin was 0.19 ± 0.07 IU/mL. Of all patients, 32% had anti-Xa levels below the prophylactic range. Anti-Xa activity inversely correlated with TBW (correlation coefficient − 0.410) and lean body weight (LBW; correlation coefficient − 0.447); 67% of patients with a LBW ≥ 80 kg had insufficient anti-Xa activity concentrations. No VTE events occurred.

Conclusions

In morbidly obese patients, a postoperative dose of 5700 IU of nadroparin resulted in subprophylactic exposure in a significant proportion of patients. Especially in patients with LBW ≥ 80 kg, a higher dose may potentially be required to reach adequate prophylactic anti-Xa levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Afshin A et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27. https://doi.org/10.1056/NEJMoa1614362.

    Article  PubMed  Google Scholar 

  2. Frühbeck G. Bariatric and metabolic surgery: a shift in eligibility and success criteria. Nat Rev Endocrinol. 2015;11(8):465–77. https://doi.org/10.1038/nrendo.2015.84.

    Article  PubMed  Google Scholar 

  3. Freeman AL, Pendleton RC, Rondina MT. Prevention of venous thromboembolism in obesity. Expert Rev Cardiovasc Ther. 2010;8(12):1711–21. https://doi.org/10.1586/erc.10.160.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA : J Am Med Assoc. 2004;292(14):1724–37. https://doi.org/10.1001/jama.292.14.1724.

    Article  CAS  Google Scholar 

  5. Quebbemann B, Akhondzadeh M, Dallal R. Continuous intravenous heparin infusion prevents peri-operative thromboembolic events in bariatric surgery patients. Obes Surg. 2005;15(9):1221–4. https://doi.org/10.1381/096089205774512528.

    Article  PubMed  Google Scholar 

  6. Scholten DJ, Hoedema RM, Scholten SE. A comparison of two different prophylactic dose regimens of low molecular weight heparin in bariatric surgery. Obes Surg. 2002;12(1):19–24. https://doi.org/10.1381/096089202321144522.

    Article  PubMed  Google Scholar 

  7. Escalante-Tattersfield T, Tucker O, Fajnwaks P, et al. Incidence of deep vein thrombosis in morbidly obese patients undergoing laparoscopic Roux-en-Y gastric bypass. Surger Obes Related Dis : Off J Am Soc Bariatric Surger. 2008;4:126–30.

    Article  Google Scholar 

  8. Smith MD, Patterson E, Wahed AS, et al. Thirty-day mortality after bariatric surgery: independently adjudicated causes of death in the longitudinal assessment of bariatric surgery. Obes Surg. 2011;21(11):1687–92. https://doi.org/10.1007/s11695-011-0497-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Becattini C, Agnelli G, Manina G, et al. Venous thromboembolism after laparoscopic bariatric surgery for morbid obesity: clinical burden and prevention. Surger Obes Relat Dis : Off J Am Soc Bariatric Surger. 2012;8:108–15.

    Article  Google Scholar 

  10. Birkmeyer NJ, Finks JF, Carlin AM, et al. Comparative effectiveness of unfractionated and low-molecular-weight heparin for prevention of venous thromboembolism following bariatric surgery. Arch Surg. 2012;147(11):994–8. https://doi.org/10.1001/archsurg.2012.2298.

    Article  PubMed  Google Scholar 

  11. Finks JF, English WJ, Carlin AM, et al. Predicting risk for venous thromboembolism with bariatric surgery: results from the Michigan Bariatric Surgery Collaborative. Ann Surg. 2012;255(6):1100–4. https://doi.org/10.1097/SLA.0b013e31825659d4.

    Article  PubMed  Google Scholar 

  12. Stroh C, Birk D, Flade-Kuthe R, et al. Evidence of thromboembolism prophylaxis in bariatric surgery-results of a quality assurance trial in bariatric surgery in Germany from 2005 to 2007 and review of the literature. Obes Surg. 2009;19(7):928–36. https://doi.org/10.1007/s11695-009-9838-2.

    Article  PubMed  Google Scholar 

  13. Melinek J, Livingston E, Cortina G, et al. Autopsy findings following gastric bypass surgery for morbid obesity. Arch Pathol Lab Med. 2002;126(9):1091–5. https://doi.org/10.1043/0003-9985(2002)126<1091:AFFGBS>2.0.CO;2.

    Article  PubMed  Google Scholar 

  14. Overby DW, Kohn GP, Cahan MA, et al. Prevalence of thrombophilias in patients presenting for bariatric surgery. Obes Surg. 2009;19(9):1278–85. https://doi.org/10.1007/s11695-009-9906-7.

    Article  PubMed  Google Scholar 

  15. De Luca M, Angrisani L, Himpens J, et al. Indications for surgery for obesity and weight-related diseases: position statements from the International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO). Obes Surg. 2016;26(8):1659–96. https://doi.org/10.1007/s11695-016-2271-4.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wei MY, Ward SM. The anti-factor Xa range for low molecular weight heparin thromboprophylaxis. Hematol Rep. 2015 Nov 23;7(4):5844. https://doi.org/10.4081/hr.2015.6027.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nutescu EA, Spinler SA, Wittkowsky A, et al. Low-molecular-weight heparins in renal impairment and obesity: available evidence and clinical practice recommendations across medical and surgical settings. Ann Pharmacother. 2009;43(6):1064–83. https://doi.org/10.1345/aph.1L194.

    Article  CAS  PubMed  Google Scholar 

  18. Kalfarentzos F, Stavropoulou F, Yarmenitis S, et al. Prophylaxis of venous thromboembolism using two different doses of low-molecular-weight heparin (nadroparin) in bariatric surgery: a prospective randomized trial. Obes Surg. 2001;11(6):670–6. https://doi.org/10.1381/09608920160558588.

    Article  CAS  PubMed  Google Scholar 

  19. Celik F, Huitema AD, Hooijberg JH, et al. Fixed-dose enoxaparin after bariatric surgery: the influence of body weight on peak anti-Xa levels. Obes Surg. 2015;25(4):628–34. https://doi.org/10.1007/s11695-014-1435-3.

    Article  PubMed  Google Scholar 

  20. Mushtaq A, Vaughns JD, Ziesenitz VC, et al. Use of enoxaparin in obese adolescents during bariatric surgery—a pilot study. Obes Surg. 2015;25(10):1869–74. https://doi.org/10.1007/s11695-015-1630-x.

    Article  PubMed  Google Scholar 

  21. Diepstraten J, Hackeng CM, van Kralingen S, et al. Anti-Xa levels 4 h after subcutaneous administration of 5,700 IU nadroparin strongly correlate with lean body weight in morbidly obese patients. Obes Surg. 2012;22:79122.

    Article  Google Scholar 

  22. Janmahasatian S, Duffull SB, Ash S, et al. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65. https://doi.org/10.2165/00003088-200544100-00004.

    Article  PubMed  Google Scholar 

  23. Heizmann M, Baerlocher GM, Steinmann F, et al. Anti-Xa activity in obese patients after double standard dose of nadroparin for prophylaxis. Thromb Res. 2002;106(4-5):179–81. https://doi.org/10.1016/S0049-3848(02)00188-3.

    Article  CAS  PubMed  Google Scholar 

  24. Barras MA, Duffull SB, Atherton JJ, et al. Individualized compared with conventional dosing of enoxaparin. Clin Pharmacol Ther. 2008;83(6):882–8. https://doi.org/10.1038/sj.clpt.6100399.

    Article  CAS  PubMed  Google Scholar 

  25. Mahe I, Drouet L, Chassany O, et al. Low molecular weight heparin for the prevention of deep venous thrombosis: a suitable monitoring in elderly patients? Pathophysiol Haemost Thromb. 2002;32(3):134–6. https://doi.org/10.1159/000065216.

    Article  CAS  PubMed  Google Scholar 

  26. Samama MM, Gerotziafas GT. Comparative pharmacokinetics of LMWHs. Semin Thromb Hemost. 2000;26:31–8.

    Article  CAS  Google Scholar 

  27. Diepstraten J, Janssen EJ, Hackeng CM, et al. Population pharmacodynamic model for low molecular weight heparin nadroparin in morbidly obese and non-obese patients using anti-Xa levels as endpoint. Eur J Clin Pharmacol. 2015;71(1):25–34. https://doi.org/10.1007/s00228-014-1760-4.

    Article  CAS  PubMed  Google Scholar 

  28. Gómez-Ambrosi J, Silva C, Galofré JC, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes. 2012;36(2):286–94. https://doi.org/10.1038/ijo.2011.100.

    Article  CAS  Google Scholar 

  29. Gómez-Ambrosi J et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care. 2012;35(2):383–8. https://doi.org/10.2337/dc11-1334.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gómez-Ambrosi J, Andrada P, Valentí V, et al. Dissociation of body mass index, excess weight loss and body fat percentage trajectories after 3 years of gastric bypass: relationship with metabolic outcomes. Int J Obes. 2017;41(9):1379–87. https://doi.org/10.1038/ijo.2017.134.

    Article  Google Scholar 

  31. Abou-Nukta F, Alkhoury F, Arroyo K, et al. Clinical pulmonary embolus after gastric bypass surgery. Surger Ob Relat Dis : Off J Am Soc Bariatric Surger. 2006;2(1):24–8; discussion 9. https://doi.org/10.1016/j.soard.2005.09.016.

    Article  Google Scholar 

  32. Cotter SA, Cantrell W, Fisher B, et al. Efficacy of venous thromboembolism prophylaxis in morbidly obese patients undergoing gastric bypass surgery. Obes Surg. 2005;15(9):1316–20. https://doi.org/10.1381/096089205774512690.

    Article  PubMed  Google Scholar 

  33. Winegar DA, Sherif B, Pate V, et al. Venous thromboembolism after bariatric surgery performed by Bariatric Surgery Center of Excellence Participants: analysis of the Bariatric Outcomes Longitudinal Database. Surger Obes Relat Dis : Off J Am Soc Bariatric Surger. 2011;7:181–8.

    Article  Google Scholar 

  34. Agarwal R, Hecht TE, Lazo MC, et al. Venous thromboembolism prophylaxis for patients undergoing bariatric surgery: a systematic review. Surger Obes Relat Dis : Off J Am Soc Bariatric Surger. 2010;6(2):213–20. https://doi.org/10.1016/j.soard.2009.11.018.

    Article  Google Scholar 

  35. Homan J, Ruinemans-Koerts J, Aarts EO, et al. Management of vitamin K deficiency after biliopancreatic diversion wit or without duodenal switch. Surg Obes Relat Dis. 2016;12(2):338–44. https://doi.org/10.1016/j.soard.2015.09.021.

    Article  PubMed  Google Scholar 

  36. Venclauskas L, Maleckas A, Arcelus JI. European guidelines on perioperative venous thromboembolism prophylaxis: surgery in the obese patient. Eur J Anaesthesiol. 2017; nov 6;

  37. K D, Kraaij L, Aarts EO, et al. Fast-track bariatric surgery improves perioperative care and logistics compared to conventional care. Obes Surg. 2015;25(1):28–35. https://doi.org/10.1007/s11695-014-1355-2.

    Article  Google Scholar 

  38. Singh K, Podolsky ER, Um S, et al. Evaluating the safety and efficacy of BMI-based preoperative administration of low-molecular-weight heparin in morbidly obese patients undergoing Roux-en-Y gastric bypass surgery. Obes Surg. 2012;22(1):47–51. https://doi.org/10.1007/s11695-011-0397-y.

    Article  PubMed  Google Scholar 

  39. Egan G, Ensom MH. Measuring anti-factor xa activity to monitor low-molecular-weight heparin in obesity: a critical review. Can J Hospital Pharm. 2015;68(1):33–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Schijns.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schijns, W., Deenen, M.J., Aarts, E.O. et al. The Effect of Obesity on Anti-Xa Concentrations in Bariatric Patients. OBES SURG 28, 1997–2005 (2018). https://doi.org/10.1007/s11695-018-3130-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-018-3130-2

Keywords

Navigation