Log in

Evolutionary History and host Ecology Determine Acanthocephalan Egg Shape

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Egg morphology varies among and within groups of parasites. Morphological variation is tightly coupled with transmission, and prior work suggests this variation is associated with host type and host habitat in some cases. Here, we used phylogenetic comparative methods combined with evolutionary model fitting to determine whether egg shape in acanthocephalans is constrained by evolutionary history and if this variation is a response to differences in habitat use among the intermediate host, definitive host, or a combination of the two. A model combining a phylogenetic reconstruction of 59 acanthocephalan species and life cycle data shows that egg shape is both constrained by evolutionary history and has evolved in response to the habitat (microhabitat) of the intermediate host. These results support the hypothesis that parasite egg morphology has adapted in response to host habitat and facilitates transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All datasets and code to fully replicate this study are available at: https://github.com/alainapb/acanthocephalan_egg_shape_evo.

References

  • Amin, O. M. (1987). Key to the families and subfamilies of Acanthocephala, with the erection of a new class (Polyacanthocephala) and a new order (Polyacanthorhynchida). J Para, 73, 1216–1219.

    CAS  PubMed  Google Scholar 

  • Amin, O. M. (2013). Classification of the Acanthocephala. Folia Parasitologica, 60, 273–305.

    PubMed  Google Scholar 

  • Amin, O. M., Thielen, F., Münderle, M., Taraschewski, H., & Sures, B. (2008). Description of a new echinorhynchid species (Acanthocephala) from the european eel, Anguilla anguilla, in Germany, with a key to species of Acanthocephalus in Europe. J Para, 94, 1299–1304.

    PubMed  Google Scholar 

  • Arredondo, N. J., & Gil de Pertierra, A. A. (2009). Pseudoacanthocephalus lutzi (Hamann, 1891) comb. n. (Acanthocephala: Echinorhynchidae) of Acanthocephlaus lutzi (Hamann, 1891), parasite of South American amphibians. Folia Parasitologica, 56, 295–304.

  • Barger, M. A., & Nickol, B. B. (1998). Structure of Leptorhynchoides thecatus and Pomphorhynchus bulbocolli (Acanthocephala) eggs in habitat partitioning and transmission. J Para, 84(3), 534–537.

  • Barger, M. A., & Nickol, B. B. (1999). Effects of coinfection with Pomphorhynchus bulbocolli on development of Leptorhynchoides thecatus (Acanthocephala) in amphipods (Hyalella azteca). J Para, 85(1), 60–63.

  • Baylis, H. A. (1933). XLIII.—On some parasitic worms from Java, with remarks on the Acanthocephalan genus Pallisentis. Annals and Magazine of Natural History, 12(70), 443–449.

  • Bhalerao, G. D. (1931). LIX.—On a new species of Acanthocephala from Ophiocephalus striatus. Journal of Natural History, 7(42), 569–573.

  • Beaulieu, J. M., Jhwueng, D. C., Boettiger, C., & O’Meara, B. C. (2012). Modeling stabilizing selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution, 66(8), 2369–2383.

    PubMed  Google Scholar 

  • Blomberg, S. P., Garland, T. Jr., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57(4), 717–745.

    PubMed  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., **e, D., Suchard, M. A., Rambaut, A., & Drummond, A. J. (2014). BEAST 2: a Software platform for bayesian evolutionary analysis. Plos Computational Biology, 10(4), e1003537.

    PubMed  PubMed Central  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res, 33(2), 261–304.

    Google Scholar 

  • Butler, M. A., & King, A. A. (2004). Phylogenetic comparative analysis: a modeling approach for adaptive evolution. The American Naturalist, 164, 683–695.

    PubMed  Google Scholar 

  • Chaudhary, A., Amin, O. M., Heckmann, R., & Singh, H. S. (2020). The molecular profile of Rhadinorhynchus dorsoventrospinosus Amin, Heckmann, and Ha 2011 (Acanthocephala: Rhadinorhynchidae) from Vietnam. J Para, 106(3), 418–427.

    PubMed  Google Scholar 

  • Church, S. H., Donoughe, S., de Medeiros, B. A., & Extavour, C. G. (2019). Insect egg size and shape evolve with ecology but not developmental rate. Nature, 571(7763), 58–62.

    CAS  PubMed  Google Scholar 

  • Deeming, D. C., & Ruta, M. (2014). Egg shape changes at the theropod–bird transition, and a morphometric study of amniote eggs. R Soc Open Sci, 1, 140311.

    PubMed  PubMed Central  Google Scholar 

  • De Roos, A. M., Persson, L., & McCauley, E. (2003). The influence of size-dependent life‐history traits on the structure and dynamics of populations and communities. Ecology Letters, 6(5), 473–487.

    Google Scholar 

  • Dezfuli, B. S. (1996). Cypria reptans (Crustacea: Ostracoda) as an intermediate host of Neoechinorhynchus rutili (Acanthocephala: Eoacanthocephala) in Italy. J Para, 82, 503–505.

  • Duursma, D. E., Gallagher, R. V., Price, J. J., & Griffith, S. C. (2018). Variation in avian egg shape and nest structure is explained by climatic conditions. Scientific Reports, 8(1), 1–10.

    Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fayard, M., Dechaume-Moncharmont, F. X., Wattier, R., & Perrot‐Minnot, M. J. (2020). Magnitude and direction of parasite‐induced phenotypic alterations: a meta‐analysis in acanthocephalans. Biological Reviews, 95(5), 1233–1251.

    PubMed  Google Scholar 

  • Felsenstein, J. (1973). Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal Of Human Genetics, 25, 471–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.

    Google Scholar 

  • García-Varela, M., de León, G. P. P., Aznar, F. J., & Nadler, S. A. (2013). Phylogenetic relationship among genera of Polymorphidae (Acanthocephala), inferred from nuclear and mitochondrial gene sequences. Molecular Phylogenetics And Evolution, 68(2), 176–184.

    PubMed  Google Scholar 

  • Goeze, J. A. E. (1782). Versuch einer Naturgeschichte der Eingeweidewürmer thierischer körper (Vol. 1). gedruckt bey Philipp Pape, Fürstl. privilegirtem Buchdrucker.

  • George, P. V., & Nadakal, A. M. (1973). Studies on the life cycle of Pallisentis nagpurenis Bhalerao, 1931 (Pallisentidae; Acanthocephala) parasitic fish Ophiocephalus striatus (Bloch). Hydrobiologia, 42, 31–43.

    Google Scholar 

  • Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, B. W., Kozak, K. H., McPeek, M. A., Moreno-Roark, F., Near, T. J., & Purvis, A. (2010). Early bursts of body size and shape evolution are rare in comparative data. Evolution, 64(8), 2385–2396.

    PubMed  Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: investigating evolutionary radiations. Bioinformatics, 24, 129–131.

    CAS  PubMed  Google Scholar 

  • Jarecka, L. (1961). Morphological adaptions of tapeworm eggs and their importance in the life cycles. Acta Parasitol, 9, 409–426.

    Google Scholar 

  • Kearn, G. C. (1986). The eggs of monogeneans. Advances In Parasitology, 25, 175–273.

    CAS  PubMed  Google Scholar 

  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.

    PubMed  PubMed Central  Google Scholar 

  • Kennedy, C. R. (2006). Ecology of the Acanthocephala. New York: Cambridge University Press.

    Google Scholar 

  • Koehler, A. V., Brown, B., Poulin, R., Thieltges, D. W., & Fredensborg, B. L. (2012). Disentangling phylogenetic constraints from selective forces in the evolution of trematode transmission stages. Evolutionary Ecology, 26(6), 1497–1512.

    Google Scholar 

  • Kostylev, N. (1924). Le genre Leptorhynchoides, nouveau genre d’Acanthocephale parasite des poissons. Annales de Parasitologie, 11, 214–215.

  • Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology And Evolution, 34, 772–773.

    Google Scholar 

  • Linton, E. (1891). Notes on the entozoa of marine fishes with discriptions of new species, pt. III. Report of United States Commissioner of Fish and Fisheries, 16, 523–542.

  • Lühe, M. (1911) Acanthocephalen. Register der Acanthocephalen und parasitischen Plattwürmer geordnet nach ihern Wirten. Prof. Dr. Brauer, Die Süsswasserfauna Deutschlands, Eine Exkursionsfauna, Jena 16: 114 pp.

  • Marchand, B. (1984). A comparative ultrastructural study of the shell surrounding the mature acanthor larvae of 13 acanthocephalan species. J Para, 70, 886–901.

    Google Scholar 

  • McConnell, C. J., Marcogliese, D. J., & Stacey, M. W. (1997). Settling rate and dispersal of sealworm eggs (Nematoda) determined using a revised protocol for myxozoan spores. J Para, 83(2), 203–206.

    CAS  PubMed  Google Scholar 

  • McDonald, M. E. (1988). Key to Acanthocephala reported in waterfowl. U. S. Fish and Wildlife Service, Resource Publication 173, Washington, D.C.

  • Müller, O. F. (1776). Zoologiae Danicae prodromus, seu, Animalium Daniae et Norvegiae indigenarum characteres, nomina, et synonyma imprimis popularium. Impensis auctoris.

  • Müller, O.F. (1780) Zoologiae Danicae seu Animalium Daniae et Norvegiae rariorum ac minus notorum. Icones, editae ab Othone Friderico Müller. Fasc.2. Havniae: Hallager, 2 p., Tab. 41–80.

  • Nikishin, V. P. (2001). The structure and formation of embryonic envelopes in acanthocephalans. Biological Bulletin, 28, 40–53.

    Google Scholar 

  • Orme, D., Freckleton, R., Thomas, G., & Petzoldt, T. (2013). The caper package: comparative analysis of phylogenetics and evolution in R. R package version. 5:1–36.

  • Pellegrino, C. R. (1984). The role of desiccation pressures and surface area/volume relationships on seasonal zonation and size distribution of four intertidal decapod Crustacea from New Zealand: implications for adaptations on land. Crustaceana, 47(3), 251–268.

    Google Scholar 

  • Peters, W., Taraschewski, H., & Latka, I. (1991). Comparative investigations of the morphology and chemical composition of the eggshells of Acanthocephala, I. Macracanthorhynchus hirudinaceus (Archiacanthocephala). Parasitology Research, 77, 542–549.

    CAS  PubMed  Google Scholar 

  • Pfenning, A. C. (2017). Egg morphology, dispersal, and transmission in acanthocephalan parasites: integrating phylogenetic and ecological approaches. MSc Thesis. College of Science and Health, DePaul University Chicago, Illinois, USA

  • Pfenning, A. C., & Sparkes, T. C. (2019). Egg fibrils and transmission in the acanthocephalan Acanthocephalus dirus. Parasitology Research, 118, 1225–1229.

  • R Core Team (2018). R: A language and environment for statistical computing.

  • Rambaut, A., Drummond, A. J., **e, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67, 901–904.

  • Reading, K. L., & Backwell, P. R. (2007). Can beggars be choosers? Male mate choice in a fiddler crab. Animal Behaviour, 74(4), 867–872.

    Google Scholar 

  • Revell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods In Ecology And Evolution, 3(2), 217–223.

    Google Scholar 

  • Sengupta, M. E., Thamsborg, S. M., Andersen, T. J., Olsen, A., & Dalsgaard, A. (2011). Sedimentation of helminth eggs in water. Water Research, 45, 4651–4660.

    CAS  PubMed  Google Scholar 

  • Smales, L. R. (2015). Acanthocephala. In A. Schmidt-Rhaesa (Ed.), Gastrotricha, Cycloneuralia, and Gnathifera (3 vol., pp. 317–335). Berlin: DeGruyter.

    Google Scholar 

  • Smart, I. H. M. (1991). Egg shape in birds. In C. Deeming (Ed.), Egg incubation: its effects on embryonic development in birds and reptiles (pp. 101–116). New York: Cambridge University Press.

    Google Scholar 

  • Stoddard, M. C., Yong, E. H., Akkaynak, D., Sheard, C., Tobias, J. A., & Mahadevan, L. (2017). Avian egg shape: form, function, and evolution. Science, 356, 1249–1254.

    CAS  PubMed  Google Scholar 

  • Takken, W., Klowden, M. J., & Chambers, G. M. (1998). Effect of body size on host seeking and blood meal utilization in Anopheles gambiae sensu stricto (Diptera: Culicidae): the disadvantage of being small. Journal Of Medical Entomology, 35(5), 639–645.

    CAS  PubMed  Google Scholar 

  • Taraschewski, H. (2000). Host-parasite interactions in Acanthocephala: a morphological approach. In J. R. Baker, R. Muller, & D. Rollinson (Eds.), Advances in parasitology (pp. 2–149). San Diego: Academic Press.

    Google Scholar 

  • Taraschewski, H., & Peters, W. (1992). Comparative investigations of the morphology and chemical composition of the eggshells of Acanthocephala: II. Palaeacanthocephala. Parasitology Research, 78, 376–381.

    CAS  PubMed  Google Scholar 

  • Taraschewski, H., Peters, W., & Latka, I. (1992). Comparative investigations of the morphology and chemical composition of the eggshells of Acanthocephala: III. Eoacanthocephala. Parasitology Research, 78, 382–387.

    CAS  PubMed  Google Scholar 

  • Van Cleave, H. J. (1916). A revision of the genus Arhythmorhynchus with descriptions of two new species from North American birds. J Para, 2, 167–174.

    Google Scholar 

  • Van Cleave, H. J. (1918). The Acanthocephala of North American Birds. Trans Am Microsc Soc, 37, 19–47.

    Google Scholar 

  • Van Cleave, H. J. (1919). Acanthocephala from the Illinois River, with descriptions of species and a synopsis of the family Neoechinorhynchidae. Bull Ill Nat Hist Surv, 13, 225–257.

    Google Scholar 

  • Van Cleave, H. J. (1931). New Acanthocephala from fishes of Mississippi and a taxonomic reconsideration of forms with unusual numbers of cement glands. Transactions of the American Microscopical Society, 50(4), 348–363.

    Article  Google Scholar 

  • Van Cleave, H. J., & Townsend, L. H. (1936). On the assignment of Echinorhynchus dims to the genus Acanthocephalus. Proc. Helminthol. Soc. Wash., 3, 63.

    Google Scholar 

  • Verweyen, L., Klimpel, S., & Palm, H. W. (2011). Molecular phylogeny of the Acanthocephala (class Palaeacanthocephala) with a paraphyletic assemblage of the orders Polymorphida and Echinorhynchida. PLoS One, 6(12), e28285.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wongkham, W., & Whitfield, P. J. (2004). Pallisentis rexus from the Chiang Mai Basin, Thailand: ultrastructural studies on egg envelope development and the mechanism of egg expansion. Journal Of Helminthology, 78, 77–85.

  • Woodward, G., Ebenman, B., Emmerson, M., Montoya, J. M., Olesen, J. M., Valido, A., & Warren, P. H. (2005). Body size in ecological networks. Trends In Ecology & Evolution, 20(7), 402–409.

Download references

Acknowledgements

Funding was provided by the Department of Biological Sciences, College of Health and Science, DePaul University, Chicago, IL. This research is part of a thesis to fulfill the requirements for the MSc Program at DePaul University.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Both authors designed the study; A.P.B. preformed the analysis; both authors analyzed the output. A.P.B. wrote the first draft of the manuscript and both authors contributed to the revisions.

Corresponding author

Correspondence to Alaina C. Pfenning-Butterworth.

Ethics declarations

Conflicts of interest/Competing Interests

The authors have no competing interests.

Ethics Approval

This data in this study was collected from the published literature, no ethical approval is required.

Consent to Participate

This research did not involve human subjects.

Consent for publication

This research did not involve human subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfenning-Butterworth, A.C., Sparkes, T.C. Evolutionary History and host Ecology Determine Acanthocephalan Egg Shape. Evol Biol 50, 137–145 (2023). https://doi.org/10.1007/s11692-022-09595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-022-09595-9

Keywords

Navigation