Log in

Blood Meal Analysis and Molecular Detection of Leishmania DNA in Wild-Caught Sand Flies in Leishmaniasis Endemic Areas of Turkey and Northern Cyprus

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Introduction

Phlebotomine sand flies (Diptera: Psychodidae) are known as the vector of diseases such as leishmaniasis, bartonellosis and viral diseases. The aim of this study is to detect the host feeding pattern of sand flies in the endemic areas for leishmaniasis in Turkey (Antalya, Kayseri) and Northern Cyprus (TRNC) as well as the presence of Leishmania DNA in the specimens.

Methods

One-hundred seventy-six blood-fed sand fly specimens were examined for blood meal analysis. A SYBR Green-PCR assay was performed with specific forward primers for each host and a universal reverse primer. Primers of human and goat were used together in multiplex PCR while goat and cow were studied separately. ITS-1 qPCR assay was also performed on both blood-fed and non-blood-fed females to detect Leishmania parasites.

Results

Blood sources could be detected in 69 out of 176 blood-fed sand fly specimens. The results of blood meal analysis showed that specimens were fed mostly on cows (22.2%) followed by humans (5.7%), goats (2.8%) and dogs (0.6%). Multiple feeding patterns were also detected as human + cow (3.4%), cow + goat (2.8%) and human + goat (1.7%). Five of the blood-fed specimens were Leishmania spp. positive: P. major s.l. (n = 1), P. tobbi (n = 2) were L. tropica positive from Antalya, P. simici was positive for L. infantum from Kayseri and P. papatasi (n = 1) was positive for L. major from Cyprus. Leishmania infection rates were determined as 3.79%, 1.69% and 2.63% among the blood-fed sand fly specimens in Antalya, Kayseri and TRNC, respectively.

Conclusion

The SYBR-Green-based multiplex PCR assay is a cost-effective and promising tool for blood meal identification of wild-caught sand flies as well as other blood-sucking arthropods. Feeding patterns of important vector species detected in the present study show the high risk in these endemic areas. As a next step, to identify the blood source in a shorter time and to make the test more sensitive, development of this assay to probe-based and multiplex PCR will be also planned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

source identified samples

Fig. 3

Similar content being viewed by others

References

  1. World Health Organization (2019) Leishmaniasis. WHO, Geneva. https://www.who.int/leishmaniasis/ [Accessed on 23 May 2019]

  2. Karakuş M, Pekağırbaş M, Demir S, Eren H, Töz S, Özbel Y (2016) Molecular screening of Leishmania spp. infection and blood meals in sand flies from a leishmaniasis focus in southwestern Turkey. Med Vet Entomol 31(2):224–229. https://doi.org/10.1111/mve.12216

    Article  Google Scholar 

  3. Mazeris A, Ivović V, Soteriadou K, Pratlong F, Christodoulou V, Tsatsaris A et al (2010) Leishmaniases and the cyprus paradox. Am J Trop Med Hyg 82(3):441–448. https://doi.org/10.4269/ajtmh.2010.09-0282

    Article  PubMed  PubMed Central  Google Scholar 

  4. Demir S, Göçmen B (2010) Faunistic study of sand flies in northern cyprus. North-West J Zool 6:149–161

    Google Scholar 

  5. Antoniou M, Haralambous C, Mazeris A, Pratlong F, Dedet JP, Soteriadou K (2008) Leishmania donovani leishmaniasis in Cyprus. Lancet Infect Dis 8(1):6–7. https://doi.org/10.1016/S1473-3099(07)70297-9

    Article  PubMed  Google Scholar 

  6. Ergunay K, Kasap OE, Orsten S, Oter K, Gunay F, Yoldar AZ, Dincer E, Alten B, Ozkul A (2014) Phlebovirus and Leishmania detection in sandflies from eastern Thrace and northern Cyprus. Parasit Vectors 7:575. https://doi.org/10.1186/s13071-014-0575-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Canakci T, Kurtdede A, Pasa S, Toz Ozensoy S, Ozbel Y (2016) Seroprevalence of Canine leishmaniasis in northern cyprus. Turkiye Parazitol Derg 40(3):117–120. https://doi.org/10.5152/tpd.2016.4807

    Article  PubMed  Google Scholar 

  8. Ruh E, Bostanci A, Kunter V, Tosun O, Imir T, Schallig H, Taylan-Ozkan A (2017) Leishmaniasis in northern Cyprus: Human cases and their association with risk factors. J Vector Borne Dis 54(4):358. https://doi.org/10.4103/0972-9062.225842

    Article  PubMed  Google Scholar 

  9. Valinsky L, Ettinger G, Bar-Gal GK, Orshan L (2014) Molecular identification of bloodmeals from sand flies and mosquitoes collected in Israel. J Med Entomol 51(3):678–685. https://doi.org/10.1603/me13125

    Article  CAS  PubMed  Google Scholar 

  10. Carvalho G, Rêgo FD, Tanure A, Silva A, Dias TA, Paz GF, Andrade Filho JD (2017) bloodmeal identification in field-collected sand flies from casa branca, brazil, using the cytochrome b PCR method. J Med Entomol 54(4):1049–1054. https://doi.org/10.1093/jme/tjx051

    Article  CAS  PubMed  Google Scholar 

  11. Sales K, Costa P, de Morais R, Otranto D, Brandão-Filho S, Cavalcanti M, Dantas-Torres F (2015) Identification of phlebotomine sand fly blood meals by real-time PCR. Parasit Vectors. https://doi.org/10.1186/s13071-015-0840-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guy MW, Killick-Kendrick R, Gill GS, Rioux JA, Bray RS (1984) Ecology of leishmaniasis in the south of France. 19. Determination of the hosts of Phlebotomus ariasi Tonnoir, 1921 in the Cévennes by bloodmeal. Ann Parasitol Hum Comp 59(5):449–458

    Article  CAS  Google Scholar 

  13. Nery LC, Lorosa NE, Franco AM (2004) Feeding preference of the sand flies Lutzomyia umbratilis and L. spathotrichia (diptera: Psychodidae, Phlebotominae) in an urban forest patch in the city of Manaus, Amazonas, Brazil. Mem Inst Oswaldo Cruz 99(6):571–574. https://doi.org/10.1590/s0074-02762004000600006

    Article  PubMed  Google Scholar 

  14. Marassá AM, Consales CA, Galati EA (2004) Enzyme-linked immunosorbent assay biotin/avidin method standardization, for identification of Lutzomyia (Lutzomyia) longipalpis bloodmeals (Lutz ve Neiva, 1912). Rev Soc Bras Med Trop 37(6):441–446. https://doi.org/10.1590/s0037-86822004000600003[InPortuguese]

    Article  PubMed  Google Scholar 

  15. Gebre-Michael T, Balkew M, Berhe N, Hailu A, Mekonnen Y (2010) Further studies on the phlebotomine sandflies of the kala-azar endemic lowlands of Humera-Metema (north-west Ethiopia) with observations on their natural blood meal sources. Parasit Vectors 3(1):6. https://doi.org/10.1186/1756-3305-3-6

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kent RJ (2009) Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol Ecol Resour 9(1):4–18. https://doi.org/10.1111/j.1755-0998.2008.02469.x

    Article  CAS  PubMed  Google Scholar 

  17. Hlavackova K, Dvorak V, Chaskopoulou A, Volf P, Halada P (2019) A novel MALDI-TOF MS-based method for blood meal identification in insect vectors: A proof of concept study on phlebotomine sand flies. PLoS Negl Trop Dis 13(9):e0007669. https://doi.org/10.1371/journal.pntd.0007669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Theodor O (1958) Psychodidae-Phlebotominae. In Lindner E (ed.), Die Fliegen Der Palaerktischen Region Lieferung 201, E. Schweizerbart’sche Verlagsbuchhandlung (Nagele u. Obermiller), Stuttgart, Germany, 1–55. (Available on request to the corresponding author)

  19. Perfil’ev PP (1968) Phlebotomidae (sandflies), In Fauna of USSR, Theodor O. (ed.) Translated by Israel Programme for Scientific Translations from 1966 original (Acad Sci USSR Fauna of USSR Diptera 3 (2) New series No.93) Wiener Bindery Ltd Jerusalem, 362. (Available on request to the corresponding author)

  20. Lewis DJ (1978) The Phlebotomine Sandflies (Diptera: Psychodidae) of the Oriental Region, Bull Br Mus Nat Hist (Ent) 37 (6): 217–343. (Available on request to the corresponding author)

  21. Lewis DJ (1982) A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bull Br Mus Nat Hist (Ent) 52 1–35. (Available on request to the corresponding author)

  22. Artemiev MM, Neronov VM (1984) Distribution and Ecology of Sandflies of the Old World (Genus Phlebotomus), Institute of Evolution, Morphology and Animal Ecology, USSR, Moscow, 208. (Available on request to the corresponding author)

  23. Killick-Kendrick R, Tang Y, Killick-Kendrick M et al (1991) The identification of female sandflies of the subgenus Larroussius by the morphology of the spermathecal ducts. Parassitologia 33 Suppl:335–347

  24. Daldal N, Özbel Y (1997) Phlebotomus spp. vektörlükleri ve kontrolü, Parazitoloji’de Arthropod hastalıkları ve vektörler, Özcel, M. A.ve Daldal, N., (Eds.) Turkiye Parazitol Derg 13:49–109. [In Turkish]

  25. Depaquit J, Léger N, Ferté H, Rioux JA, Gantier JC, Michaelides A, Economides P (2001) Les Phlébotomes de l’île de Chypre. III. Inventaire Faunistique, Parasite 8:11–20. https://doi.org/10.1051/parasite/2001081011

    Article  CAS  Google Scholar 

  26. Kent RJ, Norris DE (2005) Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am J Trop Med Hyg 73(2):336–342

    Article  CAS  Google Scholar 

  27. Töz SO, Culha G, Zeyrek FY, Ertabaklar H, Alkan MZ, Vardarlı AT, Gunduz C, Ozbel Y (2013) A real-time ITS1-PCR based method in the diagnosis and species identification of Leishmania parasite from human and dog clinical samples in Turkey. PLoS Negl Trop Dis 7(5):e2205. https://doi.org/10.1371/journal.pntd.0002205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Töz S, Ertabaklar H, Göçmen B, Demir S, Karakuş M, Arserim SK, Balcıoğlu IC, Canakçı T, Ozbel Y (2013) An epidemiological study on canine leishmaniasis (CanL) and sand flies in Northern Cyprus. Turkiye Parazitol Derg 37(2):107–112. https://doi.org/10.5152/tpd.2013.25[InTurkish]

    Article  PubMed  Google Scholar 

  29. Fischer D, Moeller P, Thomas SM, Naucke TJ, Beierkuhnlein C (2011) Combining climatic projections and dispersal ability: a method for estimating the responses of sandfly vector species to climate change. PLoS Negl Trop Dis 5(11):e1407. https://doi.org/10.1371/journal.pntd.0001407

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alten B, Maia C, Afonso MO, Campino L, Jiménez M, González E, Molina R, Bañuls AL, Prudhomme J, Vergnes B, Toty C, Cassan C, Rahola N, Thierry M, Sereno D, Bongiorno G, Bianchi R, Khoury C, Tsirigotakis N, Dokianakis E, Gradoni L (2016) Seasonal dynamics of phlebotomine sand fly species proven vectors of mediterranean leishmaniasis caused by Leishmania infantum. PLoS Negl Trop Dis 10(2):e0004458. https://doi.org/10.1371/journal.pntd.0004458

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kasap OE, Linton YM, Karakus M, Ozbel Y, Alten B (2019) Revision of the species composition and distribution of Turkish sand flies using DNA barcodes. Parasit Vectors 12(1):410. https://doi.org/10.1186/s13071-019-3669-3

    Article  CAS  Google Scholar 

  32. Omondi Z, Demir S, Arserim S (2020) Entomological survey of the sand fly fauna of kayseri province: focus on visceral and cutaneous Leishmaniasis in Central Anatolia, Turkey. Turkiye Parazitol Derg 44(3):158–163. https://doi.org/10.4274/tpd.galenos.2020.6751

    Article  PubMed  Google Scholar 

  33. Arserim S, Çetin H, Karakuş M, Demir S, Ser Ö, Töz S et al (2021) Determination of sand fly fauna and molecular detection of Leishmania in sand flies in Antalya Province, Southern Turkey. J Parasitol Res 120(9):3105–3111. https://doi.org/10.1007/s00436-021-07279-5

    Article  Google Scholar 

  34. Daba S, Daba A, Shehata MG, El Sawaf BM (2004) A simple micro-assay method for estimating blood meal size of the sand fly, Phlebotomus langeroni (Diptera: Psychodidae). J Egypt Soc Parasitol 34(1):173–182

    CAS  PubMed  Google Scholar 

  35. Pruzinova K, Sadlova J, Seblova V, Homola M, Votypka J, Volf P (2015) Comparison of bloodmeal digestion and the peritrophic matrix in four sand fly species differing in susceptibility to Leishmania donovani. PLoS One 10(6):e0128203. https://doi.org/10.1371/journal.pone.0128203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dincer E, Ozkul A, Gargari S, Ergunay K (2015) Potential animal reservoirs of toscana virus and coinfections with Leishmania infantum in Turkey. Am J Trop Med Hyg 92(4):690–697. https://doi.org/10.4269/ajtmh.14-0322

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ayhan N, Sherifi K, Taraku A, Bërxholi K, Charrel R (2017) High rates of neutralizing antibodies to toscana and sandfly fever sicilian viruses in livestock, Kosovo. Emerg Infect Dis 23(6):989–992. https://doi.org/10.3201/eid2306.161929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marriott A (2004) Complete genome sequences of Chandipura and Isfahan vesiculoviruses. Arch Virol 150(4):671–680. https://doi.org/10.1007/s00705-004-0452-2

    Article  CAS  PubMed  Google Scholar 

  39. Basak S, Chattopadhyay D (2008) Chandipura Virus. In: Mahy B, Van Regenmortel M (eds) Encyclopedia of Virology, 3rd edn. Elsevier Ltd, Oxford, pp 497–503

    Chapter  Google Scholar 

  40. Munstermann L (2019) Phlebotomine sand flies and moth flies (Psychodidae). In: Mullen G, Durden Medical and Veterinary Entomology (3rd ed., pp. 191–211). Elsevier Books

  41. Léger N, Depaquit J, Ferté H, Rioux JA, Gantier JC, Gramiccia M, Ludovisi A, Michaelides A, Christophi N, Economides P (2000). Les phlébotomes (Diptera-Psychodidae) de l'île de Chypre. II--Présence de Leishmania (Leishmania) infantum Nicolle, 1908 (zymodeme MON1) chez Phlebotomus (Larroussius) tobbi Adler et Theodor, 1930 [Phlebotomine sandflies (Diptera-Psychodidae) of the isle of Cyprus. II-Isolation and ty** of Leishmania (Leishmania infantum Nicolle, 1908 (zymodeme MON 1) from Phlebotomus (Larroussius) tobbi Adler and Theodor, 1930]. Parasite 7(2):143–146. https://doi.org/10.1051/parasite/2000072143

  42. Gasanzade GB, Safyanova VM, Tagi-zade TA, Agayev A, Gadzibekova EA, Savina MA, Alieva K, Emelyanova LP, Shalmiyev GB, Faramazov AZ (1990) The outbreak of cutaneous leishmaniasis caused by Leishmania infantum in the Geokchai district of Azerbaijan. Med Parazitol (Mosk) 2:41–45

    Google Scholar 

  43. Velo E, Paparisto A, Bongiorno G, Di Muccio T, Khoury C, Bino S, Gramiccia M, Gradoni L, Maroli M (2005) Entomological and parasitological study on phlebotomine sandflies in central and northern Albania. Parasite 12(1):45–49. https://doi.org/10.1051/parasite/2005121045

    Article  CAS  PubMed  Google Scholar 

  44. Svobodová M, Alten B, Zídková L, Dvorák V, Hlavacková J, Mysková J, Seblová V, Kasap OE, Belen A, Votýpka J, Volf P (2009) Cutaneous leishmaniasis caused by Leishmania infantum transmitted by Phlebotomus tobbi. Int J Parasitol 39(2):251–256. https://doi.org/10.1016/j.ijpara.2008.06.016

    Article  PubMed  Google Scholar 

  45. Dursun O, Erişir S, Yeşilipek A (2009) Visceral childhood leishmaniasis in southern Turkey: experience of twenty years. Turk J Pediatr 51(1):1–5

    PubMed  Google Scholar 

  46. Balcıoğlu İC, Ertabaklar H, Paşa S, Özbel Y, Özensoy Töz S. (2009) Investigating the seroprevalence of leishmaniasis in four dog shelters in Antalya and its districts. Turkiye Parazitol Derg 33:4–7

  47. Ser O, Cetin H (2013) Cutaneous leishmaniasis and its status in Antalya. Turkey Turkiye Parazitol Derg 37(2):83–91. https://doi.org/10.5152/tpd.2013.21[InTurkish]

    Article  Google Scholar 

  48. Özbilgin A, Töz S, Harman M, Günaştı Topal S, Uzun S, Okudan F et al (2019) The current clinical and geographical situation of cutaneous leishmaniasis based on species identification in Turkey. Acta Trop 190:59–67. https://doi.org/10.1016/j.actatropica.2018.11.001

    Article  PubMed  Google Scholar 

  49. Vaselek S, Volf P (2019) Experimental infection of Phlebotomus perniciosus and Phlebotomus tobbi with different Leishmania tropica strains. Int J Parasitol 49(11):831–835. https://doi.org/10.1016/j.ijpara.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  50. Koliou M, Antoniou Y, Antoniou M, Christodoulou V, Mazeris A, Soteriades E (2014) A cluster of four cases of cutaneous leishmaniasis by Leishmania donovani in Cyprus: a case series. J Med Case Rep. https://doi.org/10.1186/1752-1947-8-354

    Article  PubMed  PubMed Central  Google Scholar 

  51. Özbilgin A, Çulha G, Uzun S, Harman M, Topal S, Okudan F et al (2016) Leishmaniasis in Turkey: first clinical isolation ofLeishmania majorfrom 18 autochthonous cases of cutaneous leishmaniasis in four geographical regions. Trop Med Int Health 21(6):783–791. https://doi.org/10.1111/tmi.12698

    Article  CAS  PubMed  Google Scholar 

  52. Yazar S, Kuk S, Çetinkaya Ü, Şahin İ (2013) Leishmania sp in Cutaneous Leishmaniasis suspected patients is Kayseri. Ankara Üniv Vet Fak Derg 60(3):177–178. https://doi.org/10.1501/vetfak_0000002574

  53. Yazar S, Kuk S, Çetinkaya Ü, Şahin İ (2013) Leishmania sp in Cutaneous Leishmaniasis suspected patients is Kayseri. Ankara Üniv Vet Fak Derg 60(3):185–187. https://doi.org/10.1501/Vetfak_0000002574

  54. Kavur H, Arikan H, Ozbel Y (2017) Phlebotomus halepensis (Diptera: Psychodidae) Vectorial Capacity in Afyon and Nigde Province. Turkey J Med Entomol 55(2):317–322. https://doi.org/10.1093/jme/tjx210

    Article  Google Scholar 

  55. Kniha E, Dvořák V, Milchram M, Obwaller A, Köhsler M, Poeppl W et al (2021) Phlebotomus (Adlerius) simici NITZULESCU, 1931: first record in Austria and phylogenetic relationship with other Adlerius species. Parasit Vectors. https://doi.org/10.1186/s13071-020-04482-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) Project No: 114S999. The authors would like to thank to Res. Ass. Hatice Uluer from Faculty of Computer Engineering of Ege University to assess statistical analyses; and Zeph Nelson Omondi for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Özbel.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yetişmiş, K., Mert, U., Caner, A. et al. Blood Meal Analysis and Molecular Detection of Leishmania DNA in Wild-Caught Sand Flies in Leishmaniasis Endemic Areas of Turkey and Northern Cyprus. Acta Parasit. 67, 932–942 (2022). https://doi.org/10.1007/s11686-022-00542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-022-00542-4

Keywords

Navigation