Log in

Altered large-scale functional brain networks in neurological Wilson’s disease

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Wilson’s disease patients with neurological symptoms have motor symptoms and cognitive deficits, including frontal executive, visuospatial processing, and memory impairments. Although the brain structural abnormalities associated with Wilson’s disease have been documented, it remains largely unknown how Wilson’s disease affects large-scale functional brain networks. In this study, we investigated functional brain networks in Wilson’s disease. Particularly, we analyzed resting state functional magnetic resonance images of 30 Wilson’s disease patients and 26 healthy controls. First, functional brain networks for each participant were extracted using an independent component analysis method. Then, a computationally efficient pattern classification method was developed to identify discriminative brain functional networks associated with Wilson’s disease. Experimental results indicated that Wilson’s disease patients, compared with healthy controls, had altered large-scale functional brain networks, including the dorsal anterior cingulate cortex and basal ganglia network, the middle frontal gyrus, the dorsal striatum, the inferior parietal lobule, the precuneus, the temporal pole, and the posterior lobe of cerebellum. Classification models built upon these networks distinguished between neurological WD patients and HCs with accuracy up to 86.9% (specificity: 86.7%, sensitivity: 89.7%). The classification scores were correlated with the United Wilson’s Disease Rating Scale measures and durations of disease of the patients. These results suggest that Wilson’s disease patients have multiple aberrant brain functional networks, and classification scores derived from these networks are associated with severity of clinical symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aikath, D., Gupta, A., Chattopadhyay, I., Hashmi, M. A., Gangopadhyay, P. K., Das, S. K., & Ray, K. (2006). Subcortical white matter abnormalities related to drug resistance in Wilson disease. Neurology, 67(67), 878–880.

    Article  CAS  Google Scholar 

  • Ala, A., Walker, A. P., Ashkan, K., Dooley, J. S., & Schilsky, M. L. (2007). Wilson's disease. The Lancet, 369(9559), 397–408. https://doi.org/10.1016/s0140-6736(07)60196-2.

    Article  CAS  Google Scholar 

  • Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.

    Article  CAS  Google Scholar 

  • Algin, O., Taskapilioglu, O., Hakyemez, B., Ocakoglu, G., Yurtogullari, S., Erer, S., & Parlak, M. (2010). Structural and neurochemical evaluation of the brain and pons in patients with Wilson's disease. Japanese Journal of Radiology, 28(9), 663–671. https://doi.org/10.1007/s11604-010-0491-4.

    Article  CAS  PubMed  Google Scholar 

  • Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316, 29–52. https://doi.org/10.1111/nyas.12360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis, Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 1001–1013. https://doi.org/10.1098/rstb.2005.1634.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackburn, H. L., & Benton, A. L. (1957). Revised administration and scoring of the digit span test. Journal of Consulting Psychology, 21(2), 139–143.

    Article  CAS  Google Scholar 

  • Bodurka, J., Ye, F., Petridou, N., Murphy, K., & Bandettini, P. A. (2007). Map** the MRI voxel volume in which thermal noise matches physiological noise-implications for fMRI. Neuroimage, 34(2), 542–549.

    Article  CAS  Google Scholar 

  • Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277–290. https://doi.org/10.1016/j.tics.2010.04.004.

    Article  PubMed  Google Scholar 

  • Calhoun, V. D., Liu, J., & Adali, T. (2009). A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage, 45(1 Suppl), S163–S172. https://doi.org/10.1016/j.neuroimage.2008.10.057.

    Article  PubMed  Google Scholar 

  • Center, U. O. U. H. S. (2001). Hyperbrain glossary of terms. University of Utah Health Sciences Center.

  • Chabardès, S., Kahane, P., Minotti, L., Hoffmann, D., & Benabid, A.-L. (2002). Anatomy of the temporal pole region. Epileptic Disorders, 4(1), 9–16.

    Google Scholar 

  • Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., Shinohara, R. T., Elliott, M. A., Eickhoff, S. B., Davatzikos, C., Gur, R. C., Gur, R. E., Bassett, D. S., & Satterthwaite, T. D. (2017). Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage, 154, 174–187. https://doi.org/10.1016/j.neuroimage.2017.03.020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Delaveau, P., Salgado-Pineda, P., Fossati, P., Witjas, T., Azulay, J. P., & Blin, O. (2010). Dopaminergic modulation of the default mode network in Parkinson's disease. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 20(11), 784–792.

    Article  CAS  Google Scholar 

  • Du, Y., & Fan, Y. (2013). Group information guided ICA for fMRI data analysis. Neuroimage, 69, 157–197. https://doi.org/10.1016/j.neuroimage.2012.11.008.

    Article  PubMed  Google Scholar 

  • Dupont, S. (2002). Investigating temporal pole function by functional imaging. Epileptic Disorders International Epilepsy Journal with Videotape, 4 Suppl 1(Suppl 1), S17.

  • Fan, Y., Liu, Y., Jiang, T., Liu, Z., Hao, Y., & Liu, H. (2010). Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold. 7623, 76231J, https://doi.org/10.1117/12.844495.

  • Fan, Y., Liu, Y., Wu, H., Hao, Y., Liu, H., Liu, Z., & Jiang, T. (2011). Discriminant analysis of functional connectivity patterns on Grassmann manifold. Neuroimage, 56(4), 2058–2067. https://doi.org/10.1016/j.neuroimage.2011.03.051.

    Article  PubMed  Google Scholar 

  • Frota, N. A. F., Caramelli, P., & Barbosa, E. R. (2009). Cognitive impairment in Wilson’s disease. Dementia & Neuropsychologia, 3(1), 16–21.

    Article  Google Scholar 

  • Gjerris, A., Bech, P., Bøjholm, S., Bolwig, T., Kramp, P., Clemmesen, L., et al. (1983). The Hamilton anxiety scale: Evaluation of homogeneity and inter-observer reliability in patients with depressive disorders. Journal of Affective Disorders, 5(2), 163–170.

    Article  CAS  Google Scholar 

  • Gong, Y. (1992). Wechsler adult intelligence scale-revised in China version. Changsha: Hunan Medical College.

    Google Scholar 

  • Gray, M. A., Egan, G. F., Ando, A., Churchyard, A., Chua, P., Stout, J. C., & Georgiou-Karistianis, N. (2013). Prefrontal activity in Huntington's disease reflects cognitive and neuropsychiatric disturbances: The IMAGE-HD study. Experimental Neurology, 239, 218–228. https://doi.org/10.1016/j.expneurol.2012.10.020.

    Article  CAS  PubMed  Google Scholar 

  • Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., & Greicius, M. D. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. The Journal of Neuroscience, 29(26), 8586–8594. https://doi.org/10.1523/JNEUROSCI.1868-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, Y., Zhang, F., Tian, Y., Hu, P., Li, B., & Wang, K. (2014). Selective impairment of attentional networks of alerting in Wilson's disease. PLoS One, 9(6), e100454. https://doi.org/10.1371/journal.pone.0100454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, Y., Cheng, H., Toledo, J. B., Wang, X., Li, B., Wang, K., et al. (2016). Impaired functional default mode network in patients with mild neurological Wilson's disease. Parkinsonism & Related Disorders, 30, 46–51. https://doi.org/10.1016/j.parkreldis.2016.06.018.

    Article  CAS  Google Scholar 

  • Hanlly, J., Dewick, H., Davies, A., Playeer, J., & Turnbull, C. (1990). Verbal fluency in Parkinson's disease. Neuropsychologia, 28(7), 737–741.

    Article  Google Scholar 

  • Hawkins, R. A., Mazziotta, J. C., & Phelps, M. E. (1987). Wilson's disease studied with FDG and positron emission tomography. Neurology, 37(11), 1707–1711.

    Article  CAS  Google Scholar 

  • Hegde, S., Sinha, S., Rao, S. L., Taly, A. B., & Vasudev, M. (2010). Cognitive profile and structural findings in Wilson's disease: A neuropsychological and MRI-based study. Neurology India, 58(5), 708–713.

    Article  Google Scholar 

  • Henry, J. D., & Crawford, J. R. (2004). Verbal fluency deficits in Parkinson's disease: A meta-analysis. Journal of the International Neuropsychological Society, 10(04), 608–622.

    Article  Google Scholar 

  • Jadav, R., Saini, J., Sinha, S., Bagepally, B., Rao, S., & Taly, A. B. (2013). Diffusion tensor imaging (DTI) and its clinical correlates in drug naive Wilson's disease. Metabolic Brain Disease, 28(3), 455–462. https://doi.org/10.1007/s11011-013-9407-1.

    Article  CAS  PubMed  Google Scholar 

  • Japee, S., Holiday, K., Satyshur, M. D., Mukai, I., & Ungerleider, L. G. (2015). A role of right middle frontal gyrus in reorienting of attention: A case study. Frontiers in Systems Neuroscience, 9, 23. https://doi.org/10.3389/fnsys.2015.00023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Juan, C.-J., Chen, C.-Y., Liu, Y.-J., Chung, H.-W., Chin, S.-C., Hsueh, C.-J., Chu, H., & Zimmerman, R. A. (2005). Acute putaminal necrosis and white matter demyelination in a child with subnormal copper metabolism in Wilson disease: MR imaging and spectroscopic findings. Neuroradiology, 47(6), 401–405.

    Article  Google Scholar 

  • Kim, H. J., Kim, S. J., Kim, H. S., Choi, C. G., Kim, N., Han, S., Jang, E. H., Chung, S. J., & Lee, C. S. (2013). Alterations of mean diffusivity in brain white matter and deep gray matter in Parkinson's disease. Neuroscience Letters, 550, 64–68. https://doi.org/10.1016/j.neulet.2013.06.050.

    Article  CAS  PubMed  Google Scholar 

  • Leinweber, B., Möller, J. C., Scherag, A., Reuner, U., Günther, P., Lang, C. J., et al. (2008). Evaluation of the unified Wilson's disease rating scale (UWDRS) in German patients with treated Wilson's disease. Movement Disorders, 23(1), 54–62.

    Article  Google Scholar 

  • Levisohn, L., Croningolomb, A., & Schmahmann, J. D. (2000). Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain A Journal of Neurology, 123(Pt 5)(5), 1041.

  • Li, P., **g, R. X., Zhao, R. J., Ding, Z. B., Shi, L., Sun, H. Q., Lin, X., Fan, T. T., Dong, W. T., Fan, Y., & Lu, L. (2017). Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: A multivariate pattern recognition study. NPJ Schizophrenia, 3, 21. https://doi.org/10.1038/s41537-017-0023-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Magalhaes, A. C. A., Caramelli, P., Menezes, J. R., Lo, L. S., Bacheschi, L. A., Barbosa, E. R., Rosemberg, L. A., & Magalhaes, A. (1994). Wilson's disease: MRI with clinical correlation. [journal article]. Neuroradiology, 36(2), 97–100. https://doi.org/10.1007/bf00588068.

    Article  CAS  PubMed  Google Scholar 

  • Mesulam, M. (2009). Defining neurocognitive networks in the BOLD New World of computed connectivity. Neuron, 62(1), 1–3. https://doi.org/10.1016/j.neuron.2009.04.001.

    Article  CAS  PubMed  Google Scholar 

  • Miller, I. W., Bishop, S., Norman, W. H., & Maddever, H. (1985). The modified Hamilton rating scale for depression: Reliability and validity. Psychiatry Research, 14(2), 131–142.

    Article  CAS  Google Scholar 

  • Mironov, A. (1993). Decreased signal intensity of the putamen and the caudate nucleus in Wilson disease of the brain. Neuroradiology, 35(2), 166–166.

    Article  CAS  Google Scholar 

  • Mochizuki, H., Kamakura, K., Masaki, T., Okano, M., Nagata, N., Inui, A., Fujisawa, T., & Kaji, T. (1997). Atypical MRI features of Wilson's disease: High signal in globus pallidus on T1-weighted images. Neuroradiology, 39(3), 171–174.

    Article  CAS  Google Scholar 

  • Muhlau, M., Wohlschlager, A. M., Gaser, C., Valet, M., Weindl, A., Nunnemann, S., et al. (2009). Voxel-based morphometry in individual patients: A pilot study in early Huntington disease. [controlled clinical trial]. AJNR. American Journal of Neuroradiology, 30(3), 539–543. https://doi.org/10.3174/ajnr.A1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Map**, 15(1), 1–25.

    Article  Google Scholar 

  • Nobili, F., Abbruzzese, G., Morbelli, S., Marchese, R., Girtler, N., Dessi, B., Brugnolo, A., Canepa, C., Drosos, G. C., Sambuceti, G., & Rodriguez, G. (2009). Amnestic mild cognitive impairment in Parkinson's disease: A brain perfusion SPECT study. Movement Disorders Official Journal of the Movement Disorder Society, 24(3), 414–421.

    Article  Google Scholar 

  • Portala, K., Levander, S., Westermark, K., Ekselius, L., & von Knorring, L. (2001). Pattern of neuropsychological deficits in patients with treated Wilson's disease. European Archives of Psychiatry and Clinical Neuroscience, 251(6), 262–268.

    Article  CAS  Google Scholar 

  • Potgieser, A. R., van der Hoorn, A., Meppelink, A. M., Teune, L. K., Koerts, J., & de Jong, B. M. (2014). Anterior temporal atrophy and posterior progression in patients with Parkinson's disease. Neuro-Degenerative Diseases, 14(3), 125–132.

    Article  Google Scholar 

  • Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage, 112, 267–277. https://doi.org/10.1016/j.neuroimage.2015.02.064.

    Article  PubMed  Google Scholar 

  • Quarantelli, M., Salvatore, E., Giorgio, S. M., Filla, A., Cervo, A., Russo, C. V., et al. (2013). Default-mode network changes in Huntington's disease: An integrated MRI study of functional connectivity and morphometry. PLoS One, 8(8), e72159.

    Article  CAS  Google Scholar 

  • Roberts, E. A., Schilsky, M. L., & American Association for Study of Liver, D. (2008). Diagnosis and treatment of Wilson disease: An update. [practice guideline]. Hepatology, 47(6), 2089–2111. https://doi.org/10.1002/hep.22261.

    Article  CAS  PubMed  Google Scholar 

  • Rosas, H. D., Hevelone, N. D., Zaleta, A. K., Greve, D. N., Salat, D. H., & Fischl, B. (2005). Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology, 65(5), 745–747. https://doi.org/10.1212/01.wnl.0000174432.87383.87.

    Article  CAS  PubMed  Google Scholar 

  • Schlaug, G., Hefter, H., Engelbrecht, V., Kuwert, T., Arnold, S., Stöcklin, G., & Seitz, R. J. (1996). Neurological impairment and recovery in Wilson's disease: Evidence from PET and MRI. Journal of the Neurological Sciences, 136(1), 129–139.

    Article  CAS  Google Scholar 

  • Sener, R. N. (2003). Diffusion MR imaging changes associated with Wilson disease. American Journal of Neuroradiology, 24(5), 965–967.

    CAS  PubMed  Google Scholar 

  • Sinha, S., Taly, A. B., Ravishankar, S., Prashanth, L. K., Venugopal, K. S., Arunodaya, G. R., Vasudev, M. K., & Swamy, H. S. (2006). Wilson's disease: Cranial MRI observations and clinical correlation. Neuroradiology, 48(9), 613–621. https://doi.org/10.1007/s00234-006-0101-4.

    Article  CAS  PubMed  Google Scholar 

  • Starosta-Rubinstein, S., Young, A. B., Kluin, K., Hill, G., Aisen, A. M., Gabrielsen, T., & Brewer, G. J. (1987). Clinical assessment of 31 patients with Wilson's disease. Correlations with structural changes on magnetic resonance imaging. Archives of Neurology, 44(4), 365–370.

    Article  CAS  Google Scholar 

  • Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489–501.

    Article  Google Scholar 

  • Tessitore, A., Esposito, F., Vitale, C., Santangelo, G., Amboni, M., Russo, A., Corbo, D., Cirillo, G., Barone, P., & Tedeschi, G. (2012). Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology, 79(23), 2226–2232.

    Article  Google Scholar 

  • Tuovinen, T., Rytty, R., Moilanen, V., Abou Elseoud, A., Veijola, J., Remes, A. M., & Kiviniemi, V. J. (2016). The effect of Gray matter ICA and coefficient of variation map** of BOLD data on the detection of functional connectivity changes in Alzheimer's disease and bvFTD. Frontiers in Human Neuroscience, 10, 680. https://doi.org/10.3389/fnhum.2016.00680.

    Article  PubMed  Google Scholar 

  • Webb, W., & Adler, R. K. (2016). Neurology for the Speech-Language Pathologist-E-Book: Elsevier health sciences,297–312.

  • Wenisch, E., De Tassigny, A., Trocello, J.-M., Beretti, J., Girardot-Tinant, N., & Woimant, F. (2013). Cognitive profile in Wilson's disease: A case series of 31 patients. Revue Neurologique, 169(12), 944–949.

    Article  CAS  Google Scholar 

  • Westermark, K., Tedroff, J., Thuomas, K. Å., Hartvig, P., Långström, B., Andersson, Y., Hörnfeldt, K., & Aquilonius, S. M. (1995). Neurological Wilson's disease studied with magnetic resonance imaging and with positron emission tomography using dopaminergic markers. Movement Disorders, 10(5), 596–603.

    Article  CAS  Google Scholar 

  • Wetherill, R. R., Rao, H., Hager, N., Wang, J., Franklin, T. R., & Fan, Y. (2018). Classifying and characterizing nicotine use disorder with high accuracy using machine learning and resting-state fMRI. Addiction Biology, 0(0), https://doi.org/10.1111/adb.12644.

  • Wolf, R. C., Sambataro, F., Vasic, N., Wolf, N. D., Thomann, P. A., Saft, C., Landwehrmeyer, G. B., & Orth, M. (2012). Default-mode network changes in preclinical Huntington's disease. Experimental Neurology, 237(1), 191–198.

    Article  Google Scholar 

  • Yoneyama, N., Watanabe, H., Kawabata, K., Bagarinao, E., Hara, K., Tsuboi, T., Tanaka, Y., Ohdake, R., Imai, K., Masuda, M., Hattori, T., Ito, M., Atsuta, N., Nakamura, T., Hirayama, M., Maesawa, S., Katsuno, M., & Sobue, G. (2018). Severe hyposmia and aberrant functional connectivity in cognitively normal Parkinson's disease. PLoS One, 13(1), e0190072.

    Article  Google Scholar 

  • Zaheryany, S. M. S., Bidaki, R., Brujeni, N. H., Rezvani, M., & Shooshtari, M. H. (2012). Idiopathic thrombocytopenia and neurologic manifestations in a young female leading to the diagnosis of Wilson’s disease. Iranian Journal of Psychiatry and Behavioral Sciences, 6(2), 96–99.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the National Basic Research Program of China (grant number 2015CB856404), National Natural Science Foundation of China (grant number 61473296), the Clinical Research Key Project of Anhui University of Chinese Medicine (grant number 2014lckf02006), the Anhui Provincial Science and Technology Project (grant number 15011d04009), and NIH grants (EB022573, DA039215, and DA039002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Fan.

Ethics declarations

Conflicts of interests

All authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 478 kb)

ESM 2

(M 2 kb)

ESM 3

(M 4 kb)

ESM 4

(M 2 kb)

ESM 5

(M 3 kb)

ESM 6

(M 4 kb)

ESM 7

(TXT 1 kb)

ESM 8

(M 2 kb)

ESM 9

(M 2 kb)

ESM 10

(M 2 kb)

ESM 11

(M 1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**g, R., Han, Y., Cheng, H. et al. Altered large-scale functional brain networks in neurological Wilson’s disease. Brain Imaging and Behavior 14, 1445–1455 (2020). https://doi.org/10.1007/s11682-019-00066-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00066-y

Keywords

Navigation