Log in

The 600 °C Isothermal Section of the Zn-Al-La Ternary System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The 600 °C isothermal section of the Zn-Al-La ternary system was experimentally determined using scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction and equilibrated alloy method. The results indicate that nine three-phase regions have been identified in the Zn-Al-La ternary system at 600 °C. No new ternary compound was found in the system. La-Zn and La-Al compounds can dissolve a certain amount of Al and Zn, respectively. The solubility of Al in LaZn, LaZn5 and La3Zn22 phases is 18.6, 2.6 and 9.0 at.%, respectively, and the solubility of Al in La2Zn17 and LaZn11 phases is 17.1 and 6.3 at.%, respectively. The solubility of Zn in Al4La5, AlLa, Al2La and Al3La phases is 7.8, 7.8, 25.3 and 15.2 at.%, respectively. The ternary compound Zn2Al2La has a larger composition range, and its chemical composition can be roughly expressed as La (ZnxAl1−x)4 (0.2875 ≤ x ≤ 0.6875).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Groysman, Corrosion Problems and Solutions in Oil Refining and Petrochemical Industry Koroze A Ochrana Materialu, 2017

  2. D. Lee, J. Lee, C.C. Chen and A. Lin, Evaluation of the Anti-Corrosion Capacity for Various Electronics by Way of Accelerated Corrosion Testing Platform, 2016 (Taipei), p 159–163

  3. X.R. Guan, D.L. Zhang, J.J. Wang, Y.H. **, and Y. Li, Numerical and Electrochemical Analyses on Carbon Dioxide Corrosion of X80 Pipeline Steel Under Different Water Film Thicknesses in NACE Solution, J. Nat. Gas Sci. Eng., 2017, 37, p 199-216

    Article  Google Scholar 

  4. S.Q. Xue, X.M. Wang, B. Lin, D.Q. Chen and R.M. Li, Effect of Heat Treatment Process on Mechanical Properties of Aluminized Steel, 2017 (Hunan), p 104–106

  5. M.A. Abro and D.B. Lee, High Temperature Corrosion of Hot-Dip Aluminized Steel in Ar/1%SO2 gas, Met. Mater. Int., 2017, 23(1), p 92-97

    Article  Google Scholar 

  6. Y. Xue and X.M. Li, Effect of La Addition on as-Cast Microstructure of Al-Zn-Mg-Cu Alloy, Foundry Technol., 2017, 38(4), p 767-770

    Google Scholar 

  7. H. Chen, J.C. Yu, Y.P. Wang, M. Huang, and Y. Wang, Effects of Rare Earth Addition on the Microstructure and Properties of Low-Temperature Aluminized Coating on Oil Casing Steel N80, Heat Treat. Technol. Equip., 2015, 36(5), p 27-30

    Google Scholar 

  8. W. Zhang, J. Wen, J.M. Zhang, and Z.K. Fan, Effect of Rare Earth Elements on Kinetics of Hot Dip Aluminizing, Chin. Rare Earths, 2005, 26(6), p 29-32

    Google Scholar 

  9. M.Y. He, L. Liu, S.M. Wang, X.J. Zhao, and X. Zhao, Effect of Rare Earth on Formation and Property of Coating Deposited by Mechanical Plating Without Crystallizing, T. Mater. Heat Treat., 2008, 29(2), p 145-149

    Google Scholar 

  10. D. Yang, J.S. Chen, Q. Han, and K.R. Liu, Effects of Lanthanum Addition on Corrosion Resistance of Hot-Dipped Galvalume Coating, J. Rare Earths, 2009, 27(1), p 114-118

    Article  Google Scholar 

  11. G.X. Wu, J.Y. Zhang, Q. Li, K.C. Chou, and X.C. Wu, Microstructure and Thickness of 55 pct Al-Zn-1.6 pct Si-0.2 pct RE Hot-Dip Coatings: experiment, thermodynamic, and first-principles study, Metal. Mater. Trans. B, 2011, 43(1), p 198-205

    Article  Google Scholar 

  12. A.Z. Ikromov, I.N. Ganiev, and V.V. Kinzhibalo, Phase Equilibrium of Al-Zn-La System at 573 K, Dokl. Akad Nauk Tadzh, SSR, 1990, 33, p 173-176

    Google Scholar 

  13. J.L. Murray, The Al-Zn(Aluminum-Zinc)system, Bull. Alloy Phase Diagr., 1983, 4(1), p 55-73

    Article  Google Scholar 

  14. Q.F. Peng, F.S. Chen, B.S. Qi, and Y.S. Wang, Measurement of Al-Zn Phase Diagram by Acoustic Emission During Solidification. Proceedings of the 95th Annual Meeting of the Transactions of the American Foundrymen's Society, 1991, p 199-202

  15. H. Araki, Y. Minamino, T. Yamane, K. Azuma, Y.S. Kang, and Y. Miyamoto, Partial Phase Diagrams of the Aluminium-Rich Region of the Al-Zn System at 0.1 MPa and 2.1 GPa, J. Mater. Sci. Lett., 1992, 11(3), p 181-183

    Article  Google Scholar 

  16. H. Okamoto, Al-La (Aluminum-Lanthanum), J. Phase Equilib. Diffus., 2007, 28(6), p 581

    Article  Google Scholar 

  17. K.A. Gschneidner and F.W. Calderwood, The AI-La (Aluminum-Lanthanum) System, Bull. Alloy Phase Diagr., 1988, 9(6), p 686-689

    Article  Google Scholar 

  18. N.M. Belyavina, V.Y. Markiv, and V.V. Zavodyanny, Crystal structure of the “La5Al4” Compound, J. Alloys Compd., 2004, 367(1–2), p 132-136

    Article  Google Scholar 

  19. Y.Q. Chen, Q. Feng, L.M. Zeng, J.J. He, and W. He, Phase Relationships of the La–Al–Sb System at 773 K from 0 to 50.0 at.% Sb, J. Alloys Comp., 2010, 492(1–2), p 208-212

    Article  Google Scholar 

  20. A. Iandelli, The Physical Chemistry of Metallic Solutions and Intermetallic Compoubds, Natl. Phys. Lab., 1959, 1(9), p 3F-2-3F-11

    Google Scholar 

  21. B.A. Rao, P. Kistaiah, N.R. Reddy, and K.S. Murthy, Thermal Expansion of Lanthanum Dialuminide, J. Mater. Sci. Lett., 1982, 1(10), p 432-434

    Article  Google Scholar 

  22. E.E. Having, Influence of Repulsive Energy on Structural Parameters of Close-Packed Metal Structures, J. Less Common Met., 1975, 41(2), p 241-254

    Article  Google Scholar 

  23. A.H.G.D. Mesquita and K.H.J. Buschow, The Crystal Structure of So-Called α-LaAl4 (La3Al11), Acta Crystallogr., 1967, 22(4), p 497-501

    Article  Google Scholar 

  24. L. Rolla and A. Iandelli, Metals and Alloys of the Rare Earths. I. The system lanthanum-zinc, Ric. Sci., 1941, 20, p 1216-1226

    Google Scholar 

  25. A. Berche, P. Benigni, J. Rogez, and M.C. Record, New Experimental Investigation of the Lanthanum Zinc Phase Diagram, Thermochim. Acta, 2011, 523(1), p 70-78

    Article  Google Scholar 

  26. J. Pierre, R.M. Galera, and E. Siaud, Evidence for Kondo-Type Behaviour in CexR1-xM Compounds with R = La, Y and M = Mg, Zn, J. de Phys., 1985, 46(4), p 621-626

    Article  Google Scholar 

  27. M.L. Fornasini, F. Merlo, and G.B. Bonino, Sui Composti Di Formula MX2 Formati Dalle Terre Rare Con Lo Zinco, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat Rend, 1967, 43, p 357-363

    Google Scholar 

  28. I. Oshchapovsky, V. Pavlyuk, G. Dmytriv, and A. Griffin, Lanthanum tetrazinc, LaZn4, Acta Crystallogr. Sect. C Cryst. Struct. Commun., 2012, 68, p 37-40

    Article  Google Scholar 

  29. N. H., Die Kristallstrukturen von Ni5Ce, Ni5La, Ni5Ca, Cu5La, Cu5Ca, Zn5La, Zn5Ca, Ni2Ce, MgCe, MgLa und MgSr, Z. Metallkd, 1942, 34, p 247–253

  30. P.I. Kripyakevich, Y.B. Kuz’ma, and N.S. Ugrin, Crystal Structures of the Compounds Ce3Zn22, La3Zn22, and Pr3Zn22, J. Struct. Chem., 1967, 8(4), p 632-633

    Article  Google Scholar 

  31. T. Siegrist and Y.L. Page, Crystal Chemistry of Some Th2Zn17-Type Rare-Earth-Zinc Phases, J. Less Common Met., 1987, 127(1), p 189-197

    Article  Google Scholar 

  32. I. Johnson and R.M. Yonco, Thermodynamics of Cadmium- and Zinc-Rich Alloys in the Cd–La, Cd–Ce, Cd–Pr, Zn–La, Zn–Ce and Zn–Pr Systems, Metall. Trans., 1970, 1(4), p 905-910

    Google Scholar 

  33. V. Contardi, G. Zanicchi, R. Marazza, and R. Ferro, On Some Ternary La-Co-Zn Alloys, J. Less Common Metals, 1983, 90(2), p L25-L26

    Article  Google Scholar 

  34. X.P. Su, N.Y. Tang, and J.M. Toguri, 450 °C Isothermal Section of the Fe-Zn-Si Ternary Phase Diagram, Can. Metall. Q., 2013, 40(3), p 377-384

    Article  Google Scholar 

  35. Y.M. Han, The Isothermal Section of the RE-Sn-Zn(RE = Pr,Ce) System at 400 °C and the Performance Test of the Related Lead-Free Solder. Guangxi University, 2012

  36. T. Heumann and N.A. Dittrich, Structure Character of the Fe2Al5 Intermetallics Compound in Hot Dip Aluminizing Process Z, Metallkd., 1959, 50(10), p 617-625

    Google Scholar 

Download references

Acknowledgments

This investigation is supported by National Natural Science Foundation of China (Nos. 51671037 and 51471037), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu** Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Xu, S., Wang, J. et al. The 600 °C Isothermal Section of the Zn-Al-La Ternary System. J. Phase Equilib. Diffus. 39, 377–386 (2018). https://doi.org/10.1007/s11669-018-0645-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0645-0

Keywords

Navigation