Log in

Interdiffusion and Diffusion Mobility for Fcc Ni-Co-Mo Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Ternary fcc Ni-Co-Mo diffusion couples annealed at 1273 and 1473 K have been scanned to measure composition profiles by using electron probe microanalysis. The interdiffusion coefficients were extracted using the Whittle–Green method from the measured composition profiles of the ternary diffusion couples. Based on the diffusion coefficients reported in the literature and data determined in the present work, the diffusion mobilities for fcc Ni-Co-Mo alloys were assessed. In addition, diffusion paths and composition profiles were simulated with presently assessed mobility parameters. In general, reasonable agreements have been reached and the resulted mobility database can be used to investigate the diffusion behavior of the ternary fcc Ni-Co-Mo alloys in wide composition and temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.R. Davis, ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Materials Park, Ohio, 2000

    Google Scholar 

  2. X.J. Liu, H.H. Hu, J.J. Han, Y. Lu, and C.P. Wang, CALPHAD, 2012, 38, p 140-145

    Article  Google Scholar 

  3. N.Q. Zhu, J.C. Li, X.G. Lu, Y.L. He, and J.Y. Zhang, Metall. Mater. Trans. A, 2015, 46, p 5444-5455

    Article  Google Scholar 

  4. X.W. He, W.B. Zhang, M.Y. Yan, C. Chen, Y. Du, L.J. Zhang, and B.Y. Huang, CALPHAD, 2015, 49, p 35-40

    Article  Google Scholar 

  5. A. Davin, V. Leroy, D. Coutsouradis, and L. Habraken, Cobalt, 1963, 19, p 51-56

    Google Scholar 

  6. Y. Wang, N.Q. Zhu, H. Wang, and X.G. Lu, Metall. Mater. Trans. A, 2017, 48, p 943-947

    Google Scholar 

  7. C.E. Campbell, W.J. Boettinger, and U.R. Kattner, Acta Mater., 2002, 50, p 775-792

    Article  Google Scholar 

  8. Y.W. Cui, M. Jiang, I. Ohnuma, K. Oikawa, R. Kainuma, and K. Ishida, J. Phase Equilib. Diffus., 2008, 29, p 2-10

    Article  Google Scholar 

  9. Y. Chen, B. Tang, G. Xu, C. Wang, H. Kou, J. Li, and Y. Cui, Metall. Mater. Trans. A, 2014, 45, p 1647-1652

    Article  Google Scholar 

  10. A.G. Nikitin, S.V. Spichak, Y.S. Vedula, and A.G. Naumovets, J. Phys. D, 2009, 42, p 055301

    Article  ADS  Google Scholar 

  11. D.P. Whittle and A. Green, Scr. Metall., 1974, 8, p 883-884

    Article  Google Scholar 

  12. J.S. Kirkaldy and D.J. Young, Diffusion in the Condensed State, The Institute of Metals, London, 1987, p 83-87

    Google Scholar 

  13. J.O. Andersson and J. Ågren, J. Appl. Phys., 1992, 72, p 1350-1355

    Article  ADS  Google Scholar 

  14. B. Jönsson, Z. Metallkd., 1994, 85, p 502-509

    Google Scholar 

  15. O. Redlich and A.T. Kister, Ind. Eng. Chem. Res., 1948, 40, p 345-348

    Article  Google Scholar 

  16. C. Zhang, Y.L. Liu, Y. Du, Y.B. Peng, and J. Wang, CALPHAD, 2016, 55, p 243-251

    Article  Google Scholar 

  17. T. Heumann and A. Kottmann, Z. Metallkd., 1953, 44, p 139-154

    Google Scholar 

  18. Y. Lijima and K. Hirano, J. Jpn. Inst. Met., 1971, 35, p 511-517

    Article  Google Scholar 

  19. T. Ustad and H. Sorum, Phys. Status Solidi A, 1973, 20, p 285-294

    Article  ADS  Google Scholar 

  20. J. Kucera, K. Ciha, and K. Stransky, Czech, J. Phys. B, 1977, 27, p 758-768

    Google Scholar 

  21. S.B. Jung, T. Yamane, Y. Minamino, K. Hirano, H. Araki, and S. Saji, J. Mater. Sci. Lett., 1992, 11, p 1333-1337

    Article  Google Scholar 

  22. M.S.A. Karunaratne and R.C. Reed, Defect and Diffusion Forum, Vol 237-240, Trans Tech Publications Ltd., Dürnten, 2005, p 420-425

    Google Scholar 

  23. G. Neumann and V. Tölle, Philos. Mag. A, 1986, 54, p 619-629

    Article  ADS  Google Scholar 

  24. J.F. Wang, Y. Wang, N.Q. Zhu, and X.G. Lu, J. Phase Equilib. Diffus., 2017, 38, p 37-50

    Article  Google Scholar 

Download references

Acknowledgments

Y. Wang gratefully acknowledges the financial support from National Key R&D Program of China (Grant Number: 2017YFB0701502). XG Lu acknowledges the Shanghai Municipal Science and Technology Commission Project (Grant Number: 14521100603). Thermo-Calc software AB is appreciated for providing the DICTRA software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-Gang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lu, XG. Interdiffusion and Diffusion Mobility for Fcc Ni-Co-Mo Alloys. J. Phase Equilib. Diffus. 38, 656–664 (2017). https://doi.org/10.1007/s11669-017-0587-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0587-y

Keywords

Navigation