Log in

Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement and Mechanical Properties of Quenched Tempered X100 Pipeline Steel

  • Original Research Article
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

In this research, the efficacy of specific heat treatment procedures in mitigating hydrogen embrittlement in X100 pipeline steels is discussed. The studied steels underwent a one-step austenitization process at temperatures of 780 °C (HT1), 830 °(HT2), and 880 °C (HT3) for 90 min, followed by oil quenching, tempering at 600 °C, and air cooling. The susceptibility of both the heat-treated and as-received (REF) specimens to HIC was assessed using an electrochemical hydrogen charging, tensile testing, micro-hardness testing, and electron backscatter diffraction (EBSD) techniques. The results showed that an increase in annealing temperature from 780 to 880 °C considerably decreases hydrogen embrittlement susceptibility. The hardness value at the centerline of the as-received (REF) specimen was found to be higher than that of the heat-treated specimens. Additionally, calculations of the hydrogen embrittlement (HE) index for all specimens were conducted. The results show that the REF specimen, which demonstrated the highest hardness and HE index values, has greater susceptibility to HIC. Conversely, the HT3 specimen, which was annealed at 880 °C and displayed the lowest hardness and HE index values, showed commendable resistance to HIC. The EBSD analysis revealed a decrease in Kernel average misorientation (KAM) values in heat-treated specimens, with the lowest values found in HT3. Dominant textures in all studied steels, {011} and {111}, were considered HIC-resistant and recrystallization map** indicated a peak area of recrystallized grains in the REF specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. D.C.S. Garcia, R.N. Carvalho, V.F.C. Lins, D.M. Rezende, D.S. Dos Santos, Influence of microstructure in the hydrogen permeation in martensitic-ferritic stainless steel. Int. J. Hydrogen Energy. 40, 17102–17109 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.102

    Article  CAS  Google Scholar 

  2. L. Gan, F. Huang, X. Zhao, J. Liu, Y.F. Cheng, Hydrogen trap** and hydrogen induced cracking of welded X100 pipeline steel in H2S environments. Int. J. Hydrogen Energy. 43, 2293–2306 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.155

    Article  CAS  Google Scholar 

  3. F. Huang, S. Liu, J. Liu, K.G. Zhang, T.H. **, Sulfide stress cracking resistance of the welded WDL690D HSLA steel in H2S environment. Mater. Sci. Eng. A. 591, 159–166 (2014). https://doi.org/10.1016/j.msea.2013.10.081

    Article  CAS  Google Scholar 

  4. Y. Sun, Y. Frank Cheng, Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review. Eng. Fail. Anal. 133, 105985 (2022). https://doi.org/10.1016/j.engfailanal.2021.105985

    Article  CAS  Google Scholar 

  5. K.M. Mostafijur Rahman, M.A. Mohtadi-Bonab, R. Ouellet, J. Szpunar, N. Zhu, Effect of electrochemical hydrogen charging on an API X70 pipeline steel with focus on characterization of inclusions. Int. J. Press. Vessel. Pip. 173, 147–155 (2019). https://doi.org/10.1016/j.ijpvp.2019.05.006

    Article  CAS  Google Scholar 

  6. Y.D. Han, R.Z. Wang, H.Y. **g, L. Zhao, L.Y. Xu, P. **n, Sulphide stress cracking behaviour of the coarse-grained heat-affected zone in X100 pipeline steel under different heat inputs. Int. J. Hydrogen Energy. 45, 20094–20105 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.092

    Article  CAS  Google Scholar 

  7. H. Fu, X. Chen, W. Wang, G. Pia, J. Zhang, J. Li, Statistical study on the effects of heterogeneous deformation and grain boundary character on hydrogen-induced crack initiation and propagation in twining-induced plasticity steels. Corros. Sci. 192, 109796 (2021). https://doi.org/10.1016/j.corsci.2021.109796

    Article  CAS  Google Scholar 

  8. M.F.G. Ramirez, J.W.C. Hernández, D.H. Ladino, M. Masoumi, H. Goldenstein, Effects of different cooling rates on the microstructure, crystallographic features, and hydrogen induced cracking of API X80 pipeline steel. J. Mater. Res. Technol. 14, 1848–1861 (2021). https://doi.org/10.1016/j.jmrt.2021.07.060

    Article  CAS  Google Scholar 

  9. J.L. González-Velázquez, E. Entezari, On the assessment of non-metallic inclusions by part 13 of API 579–1/ASME FFS-1 2016. Procedia Struct Integr. 33, 221–228 (2021). https://doi.org/10.1016/j.prostr.2021.10.027

    Article  Google Scholar 

  10. A.S. Tetelman, W.D. Robertson, The mechanism of hydrogen embrittlement observed in iron-silicon single crystals. Trans. TMS-AIME. 224, 775–783 (1962)

    CAS  Google Scholar 

  11. T.Y. **, Z.Y. Liu, Y.F. Cheng, Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel. Int. J. Hydrogen Energy. 35, 8014–8021 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.089

    Article  CAS  Google Scholar 

  12. K.M.M. Rahman, M.A. Mohtadi-Bonab, R. Ouellet, J. Szpunar, A comparative study of the role of hydrogen on degradation of the mechanical properties of API X60, X60SS, and X70 pipeline steels. Steel Res. Int. 90, 1900078 (2019)

    Article  Google Scholar 

  13. A. Mustapha, E.A. Charles, D. Hardie, Evaluation of environment-assisted cracking susceptibility of a grade X100 pipeline steel. Corros. Sci. 54, 5–9 (2012). https://doi.org/10.1016/j.corsci.2011.08.030

    Article  CAS  Google Scholar 

  14. D. Pérez Escobar, C. Miñambres, L. Duprez, K. Verbeken, M. Verhaege, Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging. Corros. Sci. 53, 3166–3176 (2011). https://doi.org/10.1016/j.corsci.2011.05.060

    Article  CAS  Google Scholar 

  15. G. Krauss, Martensite in steel: strength and structure. Mater. Sci. Eng. A. 273–275, 40–57 (1999). https://doi.org/10.1016/S0921-5093(99)00288-9

    Article  Google Scholar 

  16. E. Entezari, H. Mousalou, S. Yazdani, J.L. González-Velázquez, J.A. Szpunar, The evaluation of quenching temperature effect on microstructural and mechanical properties of advanced high strength low carbon steel after quenching partitioning treatment. Procedia Struct. Integr. 37, 145–152 (2022). https://doi.org/10.1016/j.prostr.2022.01.070

    Article  Google Scholar 

  17. G. Wang, Y. Yan, J. Li, J. Huang, L. Qiao, A.A. Volinsky, Microstructure effect on hydrogen-induced cracking in TM210 maraging steel. Mater. Sci. Eng. A. 586, 142–148 (2013). https://doi.org/10.1016/j.msea.2013.07.097

    Article  CAS  Google Scholar 

  18. E. Entezari, J.L. González-Velázquez, D.R. López, M.A.B. Zúñiga, J.A. Szpunar, Review of current developments on high strength pipeline steels for HIC inducing service. Frat. Ed Integr. Strutt. 16, 20–45 (2022)

    Article  Google Scholar 

  19. M.A. Smirnov, I.Y. Pyshmintsev, A.N. Maltseva, O.V. Mushina, Effect of ferrite-bainite structure on the properties of high-strength pipe steel. Metallurgist. 56, 43–51 (2012). https://doi.org/10.1007/s11015-012-9534-7

    Article  CAS  Google Scholar 

  20. E. Entezari, B. Avishan, H. Mousalou, S. Yazdani, Effect of electro slag remelting (ESR) on the microstructure and mechanical properties of low carbon bainitic steel. Kov. Mater. 56, 253–263 (2018)

    CAS  Google Scholar 

  21. R. Pourazizi, R.K. Zadeh Davani, M.A. Mohtadi-Bonab, J.A. Szpunar, Evolution of microstructure and texture in pipeline steels at different TMCP procedures with regard to hydrogen induced cracking. Int. J. Hydrogen Energy. 46, 38741–38754 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.232

    Article  CAS  Google Scholar 

  22. M. Masoumi, C.C. Silva, M. Béreš, D.H. Ladino, H.F.G. de Abreu, Role of crystallographic texture on the improvement of hydrogen-induced crack resistance in API 5L X70 pipeline steel. Int. J. Hydrogen Energy. 42, 1318–1326 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.124

    Article  CAS  Google Scholar 

  23. M. Masoumi, C.C. Silva, H.F.G. de Abreu, Effect of crystallographic orientations on the hydrogen-induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical processing, Corros. Sci. 111 (2016) 121–131. https://doi.org/10.1016/j.corsci.2016.05.003.

  24. C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals, Scr. Mater. 49 (2003) 657–662. https://doi.org/10.1016/S1359-6462(03)00394-4.

  25. M. Loidl, O. Kolk, S. Veith, G. T., Characterization of hydrogen embrittlement in automotive advanced high strength steels. Materwiss. Werksttech. 42, 1105–1110 (2011). https://doi.org/10.1002/mawe.201100917

    Article  CAS  Google Scholar 

  26. R. Khatib Zadeh Davani, M.A. Mohtadi-Bonab, S. Yadav, E. Entezari, J.F.A. Cabezas, J. Szpunar, Effect of quench tempering on hydrogen embrittlement and corrosion behavior of X100 pipeline steel. Metals (Basel). 13, 841 (2023)

    Article  CAS  Google Scholar 

  27. D. Broek, The role of inclusions in ductile fracture and fracture toughness. Eng. Fract. Mech. 5, 55–66 (1973)

    Article  CAS  Google Scholar 

  28. M.A. Mohtadi-Bonab, M. Masoumi, J.A. Szpunar, A comparative fracture analysis on as-received and electrochemically hydrogen charged API X60 and API X60SS pipeline steels subjected to tensile testing. Eng. Fail. Anal. 129, 105721 (2021). https://doi.org/10.1016/j.engfailanal.2021.105721

    Article  CAS  Google Scholar 

  29. M.A. Mohtadi-Bonab, M. Masoumi, J.A. Szpunar, Failure analysis in API X70 pipeline steel in sour environment with an emphasis on fracture surfaces and crack propagation. Int. J. Press. Vessel. Pip. 195, 104600 (2022). https://doi.org/10.1016/j.ijpvp.2021.104600

    Article  CAS  Google Scholar 

  30. M.A. Mohtadi-Bonab, H. Mousavi, R. Pourazizi, J.A. Szpunar, Finite element modeling of HIC propagation in pipeline steel with regard to experimental observations. Int. J. Hydrogen Energy. 45, 23122–23133 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.054

    Article  CAS  Google Scholar 

  31. J. Moon, C. Park, S.-J. Kim, Influence of Ti addition on the hydrogen induced cracking of API 5L X70 hot-rolled pipeline steel in acid sour media. Met. Mater. Int. 18, 613–617 (2012). https://doi.org/10.1007/s12540-012-4007-x

    Article  CAS  Google Scholar 

  32. J. Moon, S.-J. Kim, C. Lee, Role of Ca treatment in hydrogen induced cracking of hot rolled API pipeline steel in acid sour media. Met. Mater. Int. 19, 45–48 (2013). https://doi.org/10.1007/s12540-013-1008-3

    Article  CAS  Google Scholar 

  33. J.H. Park, M. Oh, S.J. Kim, Effect of bainite in microstructure on hydrogen diffusion and trap** behavior of ferritic steel used for sour service application. J. Mater. Res. 32, 1295–1303 (2017). https://doi.org/10.1557/jmr.2016.480

    Article  ADS  CAS  Google Scholar 

  34. C.A. Zapffe, C.E. Sims, Hydrogen embrittlement, internal stress and defects in steel. Trans. Aime. 145, 225–271 (1941)

    Google Scholar 

  35. W. Qin, A. Thomas, Z.Q. Cheng, D. Gu, T.L. Li, W.L. Zhu, J.A. Szpunar, Key factors affecting hydrogen trap** at the inclusions in steels: a combined study using microprint technique and theoretical modeling. Corros. Sci. 200, 110239 (2022). https://doi.org/10.1016/j.corsci.2022.110239

    Article  CAS  Google Scholar 

  36. Q. Wen, F. Huang, H. **ao, Y. Xu, Q. Hu, J. Liu, Improving hydrogen induced cracking resistance of high strength acid-resistant submarine pipeline steels via trace-Mg treatment. Int. J. Hydrogen Energy. 48, 14808–14821 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.322

    Article  CAS  Google Scholar 

  37. J.L. González Velázquez, E. Entezari, D.R. López, M.A. Beltrán Zúñiga, J. Szpunar, Experimental and in-service observations of HIC nucleation and growth in pipeline steel, in: 2022. https://doi.org/10.1115/QNDE2022-97160

  38. R. Khatib Zadeh Davani, E.G. Ohaeri, S. Yadav, J.A. Szpunar, J. Su, M. Gaudet, M. Rashid, M. Arafin, Crystallographic texture and the mechanical properties of API 5L X70 pipeline steel designated for an arctic environment. Mater. Sci. Eng. A 889, 145849 (2024). https://doi.org/10.1016/j.msea.2023.145849

    Article  CAS  Google Scholar 

  39. E. Entezari, J. Luis González Velázquez, D.R. López, M.A. Beltrán Zúñiga, H. Mousavi, R. Khatib Zadeh Davani, J. Szpunar, An experimental and statistical study on the characteristics of non-metallic inclusions that serve as hydrogen-induced crack nucleation sites in pipeline steel. Eng. Fail. Anal. 154, 107695 (2023). https://doi.org/10.1016/j.engfailanal.2023.107695

    Article  CAS  Google Scholar 

  40. E. Entezari, J. Luis González Velázquez, M.A. Mohtadi-Bonab, D.R. López, M.A. Beltrán Zúñiga, R. Khatib Zadeh Davani, J. Szpunar, Experimental observations of nucleation and crack growth paths of hydrogen-induced cracking in pipeline steel. Eng. Fail. Anal. 154, 107650 (2023). https://doi.org/10.1016/j.engfailanal.2023.107650

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the University of Saskatchewan for their considerable financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mohtadi-Bonab.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davani, R.K.Z., Entezari, E., Mohtadi-Bonab, M.A. et al. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement and Mechanical Properties of Quenched Tempered X100 Pipeline Steel. J Fail. Anal. and Preven. 24, 318–330 (2024). https://doi.org/10.1007/s11668-023-01841-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01841-2

Keywords

Navigation