Log in

Microstructure and Tribological Behavior of Low-Temperature HVAF Ti6Al4V Coatings

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Ti-6Al-4 V is commonly used in gas turbine engines and is sometimes subject to wear during operation. To address this, cost-effective and environmentally friendly solutions are being explored, with a focus on solid-state additive manufacturing techniques such as cold spray (CS). CS can create a dense structure; however, the existing porosity adversely affects the mechanical properties. To reduce the need for post-heat-treatment, this paper considers inner-diameter high- velocity air-fuel (ID_HVAF) as an alternative repair method which is a relatively low-temperature HVAF process that can deposit coatings with microstructures close to those observed in CS coatings. ID_HVAF process can deposit particles at high velocities and relatively low temperatures so that a significant portion of the particles forming the coatings are deposited in the solid state. This work is based on the deposition of Ti-6Al-4 V coatings using the ID_HVAF gun. During deposition, increasing the nozzle length increases the particle velocity and substrate temperature. The particles hit a softer surface with higher kinetic energy, thus increasing the density of the samples. However, HVAF will still oxidize some Ti-6Al-4 V particles and produce vanadium oxide. To study the tribological behavior, Ti-6Al-4 V counterballs were used to simulate the dovetail interface. According to the result, the top deposited layers were densified by the application of counterbalance force. Compared to an α-β Ti-6Al-4 V bulk sample, the coatings have a smaller wear track width and a greater wear depth, resulting in less wear on the counterballs. Each of the three samples shows a combination of abrasive and adhesive wear. The low cohesion between the particles in the coatings results in smaller oxide debris with a greater amount on the wear track of the coatings. By acting as a roller between the counter ball and the coating, this debris can slightly reduce the coefficient of friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. H.J.C. Voorwald, R.C. Souza, W.L. Pigatin, and M.O.H. Cioffi, Evaluation of WC-17Co and WC-10Co-4Cr Thermal Spray Coatings by HVOF on the Fatigue and Corrosion Strength of AISI 4340 Steel, Surf. Coat. Technol., 2005, 190, p 155-164.

    Article  CAS  Google Scholar 

  2. D. Tejero-Martin, M. Rezvani Rad, A. McDonlad, and T. Hussain, Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings, J. Therm. Spray Technol., 2019, 28, p 598-644.

    Article  CAS  Google Scholar 

  3. M.P. Samuel, A.K. Mishra, and R.K. Mishra, Additive Manufacturing of Ti-6Al-4V Aero Engine Parts: Qualification for Reliability, J. Fail. Anal. Prev., 2018, 18(1), p 136-144.

    Article  Google Scholar 

  4. B. Yuan, C.M. Harvey, R.C. Thomson, G.W. Critchlow, and S. Wang, A New Spallation Mechanism of Thermal Barrier Coatings on Aero-Engine Turbine Blade, Theor. Appl. Mech. Lett., 2018, 8, p 7-11.

    Article  Google Scholar 

  5. Q. Zhang, Z.L. Liang, M. Cao, Z.F. Liu, A.F. Zhang, and B.H. Lu, Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Prepared by Selective Laser Melting Combined with Precision Forging, Trans Nonferrous Metals Soc China, 2017, 27, p 1036-1042.

    Article  CAS  Google Scholar 

  6. M. Shunmugavel, A. Polishett, and G. Littlefair, Microstructure and Mechanical Properties of Wrought and Additive Manufactured Ti-6Al-4V Cylindrical Bars, Procedia Technol., 2015, 20, p 231-236.

    Article  Google Scholar 

  7. S. Fouvry, P. Arnaud, A. Mignot, and P. Neubauer, Contact Size, Frequency and Cyclic Normal Force Effect on Ti-6Al-4V Fretting Wear Processes: An Approach Combining Friction Power and Contact Oxygenation, Tribol. Int., 2017, 113, p 460-473.

    Article  CAS  Google Scholar 

  8. L. Mishnaevsky Jr. and K. Thomsen, Costs of Repair of Wind Turbine Blades: INFLUENCE of Technology Aspects, Wind Energy, 2020, 23, p 2247-2255.

    Article  Google Scholar 

  9. C.J. Huang, H.J. Wu, Y.C. **e, W.Y. Li, C. Verdy, M.P. Planche, H.J. Liao, and G. Montavon, Advanced Brass-Based Composites via Cold-Spray Additive-Manufacturing and its Potential in Component Repairing, Surf. Coat. Technol., 2019, 371, p 211-223.

    Article  CAS  Google Scholar 

  10. S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li, and R. Lupoi, Cold Spray Additive Manufacturing and Repair: Fundamentals and Applications, Addit. Manuf., 2018, 21, p 628-650.

    CAS  Google Scholar 

  11. A. Sova, S. Grigoriev, A. Okunkova, and I. Smurov, Potential of Cold Gas Dynamic Spray as Additive Manufacturing Technology, Int. J. Adv. Manuf. Technol., 2013, 69, p 2269-2278.

    Article  Google Scholar 

  12. X. Yan, C. Huang, C. Chen, R. Bolot, L. Dembinski, R. Huang, W. Ma, H. Liao, and M. Liu, Additive Manufacturing of WC Reinforced Maraging Steel 300 Composites by Cold Spray and Selective Laser Melting, Surf. Coat. Technol., 2019, 371, p 161-171.

    Article  CAS  Google Scholar 

  13. C. Chen, Y. **e, X. Yan, S. Yin, H. Fukanuma, R. Huang, R. Zhao, J. Wang, Z. Ren, M. Liu, and H. Liao, Effect of Hot Isostatic Pressing (HIP) on Microstructure and Mechanical Properties of Ti- 6Al-4V Alloy Fabricated by Cold Spray Additive Manufacturing, Addit. Manuf., 2019, 27, p 595-605.

    CAS  Google Scholar 

  14. S. Bagherifard, S. Monti, M.V. Zuccoli, M. Riccio, J. Kondas, and M. Guagliano, Cold Spray Deposition for Additive Manufacturing of Freeform Structural Components Compared to Selective Laser Melting, Mater. Sci. Eng. A, 2018, 721, p 339-350.

    Article  CAS  Google Scholar 

  15. X. **e, Y. Ma, C. Chen, G. Ji, C. Verdy, H. Wu, Z. Chen, S. Yuan, B. Normand, S. Yin, and H. Liao, Cold Spray Additive Manufacturing of Metal Matrix Composites (MMCs) Using a Novel Nano TiB2-Reinforced 7075Al powder, J Alloys Compds, 2020, 819, p 152962.

    Article  CAS  Google Scholar 

  16. P.L. Fauchais, J.V.R. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals from Powders to Parts, 1st ed. Springer, Berlin, 2015.

    Google Scholar 

  17. T. Schmidt, F. Gartner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742.

    Article  CAS  Google Scholar 

  18. M. Hassani-Gangaraj, D. Veysset, V.K. Champagne, K.A. Nelson, and C.A. Schuh, Adiabatic Shear Instability is not Necessary for Adhesion in Cold Spray, Acta Mater., 2018, 158, p 430-439.

    Article  CAS  Google Scholar 

  19. J. **e, Simulation of cold spray particle deposition process, Thèse, Le Grade de Docteur, L’institut national des sciences appliquées de Lyon, (2014)

  20. J. **e, D. Nelias, H.W. Berre, K. Ogawa, and Y. Ichikawa, Simulation of the Cold Spray Particle Deposition Process, J. Tribol., 2015, 137(4), p 041101.

    Article  Google Scholar 

  21. S. Rahmati and A. Ghaei, The Use of Particle/Substrate Material Models in Simulation of Cold- Gas Dynamic-Spray Process, J. Therm. Spray Technol., 2014, 23, p 530-540.

    Article  CAS  Google Scholar 

  22. M. Yu, W.-Y. Li, F.F. Wang, X.K. Suo, and H.L. Liao, Effect of Particle and Substrate Preheating on Particle Deformation Behavior on Cold Spraying, Surf. Coat. Technol., 2013, 220, p 174-178.

    Article  CAS  Google Scholar 

  23. P. Khamsepour, C. Moreau, and A. Dolatabadi, Numerical Simulation of the Effect of Particle and Substrate Pre-Heating on Porosity Level and Residual Stress of As-Sprayed Ti6Al4V Components, J. Therm. Spray Technol., 2021, 31, p 70-83.

    Article  PubMed  PubMed Central  Google Scholar 

  24. P. Khamsepour, J. Oberste-Berghaus, M. Aghasibeig, C. Moreau, and A. Dolatabadi, The Effect of Spraying Parameters of the Inner-Diameter High-Velocity Air-Fuel (ID-HVAF) Torch on Characteristics of Ti-6Al-4V In-Flight Particles and Coatings Formed at Short Spraying Distances, J. Therm. Spray Technol., 2023, 32, p 568-585.

    Article  CAS  Google Scholar 

  25. J. Oberste-Berghaus, M. Aghasibeig, A. Burgess, P. Khamsepour, C. Moreau, and A. Dolatabadi, Exploring Miniaturized HVOF Systems for the Deposition of Ti-6Al-4V, J. Therm. Spray Technol., 2023, 32, p 760-772.

    Article  CAS  Google Scholar 

  26. P. Khamsepour, C. Moreau, and A. Dolatabadi, Effect of Particle and Substrate Pre-Heating on the Oxide Layer and Material Jet Formation in Solid-state Spray Deposition: A Numerical Study, J. Therm. Spray Technol., 2023, 32, p 1153-1166.

    Article  CAS  Google Scholar 

  27. R.M. Molak, H. Araki, W. Watanabe, H. Katanoda, N. Ohno, and S. Kuroda, Effects of Spray Parameters and Post-Spray Heat Treatment on Microstructure and Mechanical Properties of Warm-Sprayed Ti-6Al-4V Coatings, J. Therm. Spray Technol., 2017, 26, p 627-647.

    Article  CAS  Google Scholar 

  28. N.W. Khun, A.W.Y. Tan, W. Sun, and E. Liu, Wear and Corrosion Resistance of Thick Ti-6Al- 4V Coating Deposited on Ti-6Al-4V Substrate via High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26, p 1393-1407.

    Article  CAS  Google Scholar 

  29. V.N.V. Munagala, T.B. Torgerson, T.W. Scharf, and R.R. Chromik, High Temperature Friction and Wear Behavior of Cold-Sprayed Ti-6Al-4V and Ti6Al4V-TiC Composite Coatings, Wear, 2019, 426, p 357-369.

    Article  Google Scholar 

  30. N.W. Khun, A.W.Y. Tan, W. Sun, and E. Liu, Effect of Heat Treatment Temperature on Microstructure and Mechanical and Tribological Properties of Cold Sprayed Ti-6Al-4V Coatings, Tribol. Trans., 2017, 60, p 1033-1042.

    Article  CAS  Google Scholar 

  31. P. Sirvent, M.A. Garrido, S. Lozano-Perez, and P. Poza, Oscillating and Unidirectional Sliding Wear Behaviour of Cold Sprayed Ti-6Al-4V Coating on Ti-6Al-4V Substrate, Surf. Coat. Technol., 2020, 382, 125152.

    Article  CAS  Google Scholar 

  32. N.W. Khun, A.W.Y. Tan, W. Sun, and E. Liu, Effects of Nd: YAG Laser Surface Treatment on Tribological Properties of Cold-Sprayed Ti-6Al-4V Coatings Tested against 100Cr6 Steel under Dry Condition, Tribol. Trans., 2019, 62, p 391-402.

    Article  CAS  Google Scholar 

  33. A. Roy, N. Sharifi, V.N.V. Munagala, S.A. Alidokhtb, P. Patel, M. Makowiec, R.R. Chromik, C. Moreau, and P. Stoyanov, Microstructural Evolution and Tribological Behavior of Suspension Plasma Sprayed CuO as High-Temperature Lubricious Coatings, Wear, 2023, 524–525, 204874.

    Article  Google Scholar 

  34. A. Roy, V.N.V. Munagala, P. Patel, N. Sharifi, S.A. Alidokhtb, M. Makowiec, R.R. Chromik, C. Moreau, and P. Stoyanov, Friction and Wear Behavior of Suspension Plasma Sprayed Tantalum Oxide Coatings at Elevated Temperatures, Surf. Coat. Technol., 2023, 452, 129097.

    Article  CAS  Google Scholar 

  35. P. Tonge, A. Roy, P. Patel, C.J. Beall, and P. Stoyanov, Environmentally Friendly Bonded MoS2 Solid Film Lubricants for Aerospace Applications: Closing the Gap, Sustain. Mater. Technol., 2023, 35, p e00552.

    CAS  Google Scholar 

  36. E.P. Whitenton and P.J. Blau, A Comparison of Methods for Determining Wear Volume and Surface Parameters of Spherically Tipped Sliders, Wear, 1998, 124, p 291-309.

    Article  Google Scholar 

  37. N. Wu, F. Yang, W. Sun, G. Yang, Y. Liang, S. Zhang, and J. Wang, In-Flight Oxidation of Fe- Based Amorphous Particle During HVAF Spraying: Numerical Simulation and Experiment, J. Therm. Spray Technol., 2023, 32, p 2187-2201.

    Article  CAS  Google Scholar 

  38. Y.-S. Lee, M. Niinomi, M. Nakai, K. Narita, and K. Cho, Predominant Factor Determining Wear Properties of β-type and (α+β)-type Titanium Alloys in Metal-to-Metal Contact for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2015, 41, p 208-220.

    Article  PubMed  Google Scholar 

  39. M. Fellah, N. Hezil, M. Touhami, M. AbdulSamad, A. Obrosov, D.O. Bokov, E. Marchenko, A. Montagne, A. Iost, and A. Alhussein, Structural, Tribological and Antibacterial Properties of (α + β) Based ti-Alloys for Biomedical Applications, J Mater Res Technol, 2020, 9, p 14061-14074.

    Article  CAS  Google Scholar 

  40. V.N.V. Mungala and R.R. Chromik, The Role of Metal Powder Properties on the Tribology of Cold Spray Ti6Al4V-TiC Metal Matrix Composites, Surf. Coat. Technol., 2021, 411, 126974.

    Article  Google Scholar 

  41. K. Kato, Wear in Relation to Friction: A Review, Wear, 2000, 241, p 151-157.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Drs. Jorg Oberste-Berghaus and Maniya Aghasibeig, Rakesh Bhaskaran Nair Saraswathy and Fadhel Ben-Ettouil for their help in conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Khamsepour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamsepour, P., Stoyanov, P., Dolatabad, A. et al. Microstructure and Tribological Behavior of Low-Temperature HVAF Ti6Al4V Coatings. J Therm Spray Tech (2024). https://doi.org/10.1007/s11666-024-01800-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11666-024-01800-9

Keywords

Navigation