Log in

Effect of Inter-Splat Bonding Quality on the Dependence of Wear Behavior of Plasma-Sprayed Stainless Steel Coating on Applied Load

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

304 stainless steel (304SS) powder and novel Mo-cladded 304SS (304SS-Mo) powder were used as feedstocks to prepare metallic coatings with different inter-splat bonding qualities. Wear test was conducted to examine the dependence of wear behavior on the inter-splat bonding quality. The results showed that poor inter-splat bonding leads to much lower wear resistance in conventional 304SS coating relative to that of 304SS bulk, especially at high loading conditions (>75 N), where the wear rate increased to 5.53 × 10−3 mm3/(m⋅N) by 3.5 times higher than that at low-load range. However, the novel 304SS-Mo coating with metallurgical inter-splat bonding and minimized oxide inclusions exhibited a low wear rate comparable to that of 304SS bulk. Failure analysis of worn samples suggests that splat delamination contributes to low wear resistance of the 304SS coating; conversely, the absence of splat delamination results in higher wear resistance of the 304SS-Mo coating. Using Mo-cladded powders, significantly enhanced inter-splat bonding enables the use of plasma-sprayed metallic coating under high-load wear conditions. The strong dependence of wear resistance on the load in conventional coating implies that evaluation of wear performance of thermally sprayed metallic coating should consider both the wear rate and critical load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Mcpherson and B.V. Shafer, Interlamellar Contact within Plasma Sprayed Coatings, Thin Solid Films., 1982, 97, p 201–204.

    Article  CAS  Google Scholar 

  2. C.J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11, p 365–374.

    Article  CAS  Google Scholar 

  3. C.J. Li, G.J. Yang, and A. Ohmori, Relationship Between Particle Erosion and Lamellar Microstructure for Plasma-sprayed Alumina Coatings, Wear, 2006, 260, p 1166–1172.

    Article  CAS  Google Scholar 

  4. R. Mcpherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat. Technol., 1989, 39–40(89), p 173–181.

    Article  Google Scholar 

  5. M. Vardelle, A. Vardelle, and A.C. Leger, Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes, J. Therm. Spray Technol., 1995, 4(1), p 50–58.

    Article  CAS  Google Scholar 

  6. S. Deshpande, S. Sampath, and H. Zhang, Mechanisms of Oxidation and Its Role in Microstructural Evolution of Metallic Thermal Spray Coatings-Case Study for Ni-Al, Surf. Coat. Technol., 2006, 200, p 5395–5406.

    Article  CAS  Google Scholar 

  7. Z. Zeng, S. Kuroda, and H. Era, Comparison of Oxidation Behavior of Ni-20Cr Alloy and Ni-base Self-fluxing Alloy During Air Plasma Spraying, Surf. Coat. Technol., 2009, 204, p 69–77.

    Article  CAS  Google Scholar 

  8. Z. Zeng, S. Kuroda, J. Kawakita, M. Komatsu, and H. Era, Effects of Some Light Alloying Elements on the Oxidation Behavior of Fe and Ni-Cr Based Alloys During Air Plasma Spraying, J. Therm. Spray Technol.l., 2010, 19, p 128–136.

    Article  CAS  Google Scholar 

  9. J. Wang, X.T. Luo, C.J. Li, N.S. Ma, and M. Takahashi, Effect of Substrate Temperature on the Microstructure and Interface Bonding Formation of Plasma Sprayed Ni20Cr Splat, Surf. Coat. Technol., 2019, 371, p 36–46.

    Article  CAS  Google Scholar 

  10. J. Wang, C.J. Li, G.J. Yang, and C.X. Li, Effect of Oxidation on the Bonding Formation of Plasma-Sprayed Stainless Steel Splats onto Stainless Steel Substrate, J. Therm. Spray Technol., 2017, 26(1–2), p 1–13.

    Google Scholar 

  11. J. Wang and C.J. Li, The Effect of Molybdenum Substrate Oxidation on Molybdenum Splat Formation, J. Therm. Spray Technol., 2018, 27, p 14–24.

    Article  CAS  Google Scholar 

  12. O. Poliarus, J. Morgiel, P. Bobrowski, M. Szlezynger, O. Umanskyi, M. Ukrainets, L. Maj, and O. Kostenko, Effect of Powder Preparation on the Microstructure and Wear of Plasma-Sprayed NiAl/CrB2 Composite Coatings, J. Therm. Spray Technol., 2019, 28, p 1039–1048.

    Article  CAS  Google Scholar 

  13. J.J. Tian, X.T. Luo, J. Wang, and C.J. Li, Mechanical Performance of Plasma-sprayed Bulk-like NiCrMo Coating with a Novel Shell-core-structured NiCr-Mo Particle, Surf. Coat. Technol., 2018, 353, p 179–186.

    Article  CAS  Google Scholar 

  14. S. Houdková, E. Smazalová, M. Vostřák, and J. Schubert, Properties of NiCrBSi Coating, as Sprayed and Remelted by Different Technologies, Surf. Coat. Technol., 2014, 253, p 14–26.

    Article  Google Scholar 

  15. R. Ahmed, O. Ali, C.C. Berndt, and A. Fardan, Sliding Wear of Conventional and Suspension Sprayed Nanocomposite WC-Co Coatings: An Invited Review, J. Therm. Spray Technol., 2021, 30, p 800–861.

    Article  CAS  Google Scholar 

  16. C.J. Li, X.T. Luo, S.W. Yao, G.R. Li, C.X. Li, and G.J. Yang, The Bonding Formation During Thermal Spraying of Ceramic Coatings: A Review, J. Therm. Spray Technol., 2022, 31, p 780–817.

    Article  CAS  Google Scholar 

  17. K.H. ZumGahr, Wear by Hard Particles, Tribol. Int., 1998, 31, p 587–596.

    Article  Google Scholar 

  18. Y. Arata, A. Ohmori, and C.J. Li, Fracture Behavior of Plasma Sprayed Ceramic Coatings in Scratch Test, Transactions of Japan Weld. Res. Inst., 1988, 17, p 31–35.

    Google Scholar 

  19. P.A. Engel and F.F. Ling, Impact Wear of Materials, J. Appl. Mech., 1976, 45, p 458–459.

    Article  Google Scholar 

  20. J.G.A. Bitter, A Study of Erosion Phenomena, Wear, 1963, 6(1), p 5–21.

    Article  Google Scholar 

  21. W. Tillmann, W. Luo, and U. Selvadurai, Wear Analysis of Thermal Spray Coatings on 3D Surfaces, J. Therm. Spray Technol., 2014, 23(1–2), p 245–251.

    Article  Google Scholar 

  22. V. Varadaraajan, R. Guduru, and P.S. Mohanty, Property Evolution in Amorphous Steel Coatings by Different Thermal Spray Processes, J. Therm. Spray Technol., 2022, 31, p 1056–1066.

    Article  CAS  Google Scholar 

  23. M.A. Faridi, S.K. Nayak, D.K.V.D. Prasad, A. Kumar, and T. Laha, Effect of Microstructure and Phase Evolution on the Wear Behavior of Fe-Based Amorphous/Nanocrystalline Composite Coatings Synthesized by Plasma Spraying, J. Therm. Spray Technol. Therm. Spray Technol., 2023, 32, p 2054–2067.

    Article  CAS  Google Scholar 

  24. P. Sassatelli, G. Bolelli, M.L. Gualtieri, E. Heinonen, M. Honkanen, L. Lusvarghi, T. Manfredini, R. Rigon, and M. Vippola, Properties of HVOF-sprayed Stellite-6 Coatings, Surf. Coat. Technol., 2018, 338, p 45–62.

    Article  CAS  Google Scholar 

  25. P.P. Zhang, S.Y. Jiang, Y.J. Guo, Y.F. Sui, X.Y. Ding, Z.H. Yao, Q.L. Zhang, and J.H. Yao, Microstructures and Wear Resistance of Mo Coating Fabricated by In Situ Laser-Assisted Plasma Spraying, J. Therm. Spray Technol., 2023 https://doi.org/10.1007/s11666-023-01683-2

    Article  Google Scholar 

  26. Y.C. Zhu, K. Yukimura, C.X. Ding, and P.Y. Zhang, Tribological Properties of Nanostructured and Conventional WC-Co Coatings Deposited by Plasma Spraying, Thin Solid Films, 2001, 388, p 277–282.

    Article  CAS  Google Scholar 

  27. T. Sudaprasert, P.H. Shipway, and D.G. Mccartney, Sliding Wear Behaviour of HVOF Sprayed WC-Co Coatings Deposited with Both Gas-fuelled and Liquid-fuelled Systems, Wear, 2003, 255, p 943–949.

    Article  CAS  Google Scholar 

  28. P.H. Shipway, D.G. McCartney, and T. Sudaprasert, Sliding Wear Behaviour of Conventional and Nanostructured HVOF Sprayed WC-Co Coatings, Wear, 2005, 259, p 820–827.

    Article  CAS  Google Scholar 

  29. J. Ahn, B. Hwang, and S. Lee, Improvement of Wear Resistance of Plasma-Sprayed Molybdenum Blend Coatings, J. Therm. Spray Technol., 2005, 14(2), p 251–257.

    Article  CAS  Google Scholar 

  30. J.H. Yan, Z.Y. He, Y. Wang, J.W. Qiu, and Y.M. Wang, Microstructure and Wear Resistance of Plasma-Sprayed Molybdenum Coating Reinforced by MoSi2 Particles, J. Therm. Spray Technol., 2016, 25(7), p 1322–1329.

    Article  CAS  Google Scholar 

  31. W.F. Xu, Y.R. Niu, H. Ji, H. Li, C.K. Chang, and X.B. Zheng, Effect of Ni Addition on Microstructure and Tribological Properties of Plasma-Sprayed MoSi2 Coatings, J. Therm. Spray Technol., 2018, 27, p 1632–1642.

    Article  CAS  Google Scholar 

  32. X.Y. Dong, X.T. Luo, S.L. Zhang, and C.J. Li, A Novel Strategy for Depositing Dense Self-fluxing Alloy Coatings with Sufficiently Bonded Splats by One-Step Atmospheric Plasma Spraying, J. Therm. Spray Technol., 2020, 29, p 173–184.

    Article  CAS  Google Scholar 

  33. X.J. Liao, L. Zhang, X.Y. Dong, X. Chen, X.T. Luo, and C.J. Li, Self-bonding Effect Development for Plasma Spraying of Stainless Steel Coating Through Using Mo-clad Stainless Steel Powders, JOM, 2020, 72(12), p 4613–4623.

    Article  CAS  Google Scholar 

  34. X.J. Liao, X.T. Luo, L. Zhang, X. Chen, Y.Q. Sun, C.X. Li, G.J. Yang, and C.J. Li, Mo-alloyed Stainless Steel Coating with Improved Cavitation Erosion Resistance by Plasma Spraying a Specially Designed Core-shell-structured Powder, Wear, 2023, 528–529, 204961.

    Article  Google Scholar 

  35. Y.P. Wan, J.R. Fincke, and S. Sampath, Modeling and Experimental Observation of Evaporation from Oxidizing Molybdenum Particles Entrained in a Thermal Plasma Jet, Int. J. Heat Mass Transf.Heat Mass Transf., 2002, 45, p 1007–1015.

    Article  CAS  Google Scholar 

  36. R.T. Allsop, T.J. Pitt, and J.V. Hardy, The Adhesion of Sprayed Molybdenum, Metallurgia, 1961, 63, p 125–131.

    CAS  Google Scholar 

  37. S. Kitahara and A. Hasui, Study of the Bonding Mechanism of Sprayed Coatings, J. Vac. Sci. Technol., 1974, 11, p 747–753.

    Article  CAS  Google Scholar 

  38. S. Sampath, G.A. Bancke, and H. Herman, Plasma Sprayed Ni-Al Coatings, Surf. Eng., 1989, 5, p 293–298.

    Article  CAS  Google Scholar 

  39. V.V. Sobolev, J.M. Guilemany, J. Nutting, and J.R. Miquel, Development of Substrate-Coating Adhesion in Thermal Spraying, Int. Mater. Rev., 1997, 42(3), p 117–136.

    Article  CAS  Google Scholar 

  40. L. Li, X.Y. Wang, G. Wei, A. Vaidya, H. Zhang, and S. Sampath, Substrate Melting During Thermal Spray Splat Quenching, Thin Solid Films, 2004, 468, p 113–119.

    Article  CAS  Google Scholar 

  41. C.J. Li, X.T. Luo, X.Y. Dong, L. Zhang, and C.X. Li, Recent Research Advances in Plasma Spraying of Bulk-Like Dense Metal Coatings with Metallurgically Bonded Lamellae, J. Therm. Spray Technol., 2022, 31, p 5–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Matthews, Shrouded Plasma Spray of Ni-20Cr Coatings Utilizing Internal Shroud Film Cooling, Surf. Coat. Technol., 2014, 249, p 56–74.

    Article  CAS  Google Scholar 

  43. “Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings,” C633, Annual Book of ASTM Standards, Part 3, ASTM, 1-7 (2001)

  44. J. Wang, J.D. **ng, L. Cao, W. Su, and Y.M. Gao, Dry Sliding Wear Behavior of Fe3Al Alloys Prepared by Mechanical Alloying and Plasma Activated Sintering, Wear, 2010, 268, p 473–480.

    Article  CAS  Google Scholar 

  45. J.J. Tian, S.W. Yao, X.T. Luo, C.X. Li, and C.J. Li, An Effective Approach for Creating Metallurgical Self-bonding in Plasma-spraying of NiCr-Mo Coating by Designing Shell-core-structured Powders, Acta Mater., 2016, 110, p 19–30.

    Article  CAS  Google Scholar 

  46. J.J. Tian, Y.K. Wei, C.X. Li, G.J. Yang, and C.J. Li, Effect of Post-spray Shot Peening Treatment on the Corrosion Behavior of NiCr-Mo Coating by Plasma Spraying of the Shell-Core-Structured Powders, J. Therm. Spray Technol., 2018, 27, p 232–242.

    Article  CAS  Google Scholar 

  47. J.J. Tian, S.W. Yao, S.L. Zhang, and C.J. Li, Effect of the Shell-core-structured Particle Design on the Heating Characteristic of Nickel-based Alloy Particle During Plasma Spraying, Surf. Coat. Technol., 2018, 335, p 52–61.

    Article  CAS  Google Scholar 

  48. X. Zhou, Y.M. Gao, and Y.R. Wang, Wear Behavior of Ni-coated Carbon Fiber and ZrC Particles Reinforced 2024Al Matrix Composites, Wear, 2023, 528–529, 204967.

    Article  Google Scholar 

  49. E.O. Olakanmi and M. Doyoyo, Laser-Assisted Cold-Sprayed Corrosion and Wear-Resistant Coatings: A Review, J. Therm. Spray Technol., 2014, 23(5), p 765–785.

    Article  CAS  Google Scholar 

  50. K. Szymański, A. Hernas, G. Moskal, and H. Myalska, Thermally Sprayed Coatings Resistant to Erosion and Corrosion for Power Plant Boilers-A Review, Surf. Coat. Technol., 2015, 268, p 153–164.

    Article  Google Scholar 

  51. M. Tkadletz, N. Schalk, R. Daniel, J. Keckes, C. Czettl, and C. Mitterer, Advanced Characterization Methods for Wear Resistant Hard Coatings: A review on Recent Progress, Surf. Coat. Technol., 2016, 285, p 31–46.

    Article  CAS  Google Scholar 

  52. B. Huang, C. Zhang, G. Zhang, and H.L. Liao, Wear and Corrosion Resistant Performance of Thermal-sprayed Fe-based Amorphous Coatings: A Review, Surf. Coat. Technol., 2019, 377, 124896.

    Article  CAS  Google Scholar 

  53. J.A. Gan and C.C. Berndt, Review on the Oxidation of Metallic Thermal Sprayed Coatings: A Case Study with Reference to Rare-Earth Permanent Magnetic Coatings, J. Therm. Spray Technol., 2013, 22(7), p 1069–1091.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (52031010, U1837201); Key Research and Development Program of Jiangxi Academy of Sciences (2021YSBG21005, 2023YJC2013, 2023YSBG21011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ao-Tao Luo or Chang-Jiu Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, XJ., Zhang, L., Sun, YQ. et al. Effect of Inter-Splat Bonding Quality on the Dependence of Wear Behavior of Plasma-Sprayed Stainless Steel Coating on Applied Load. J Therm Spray Tech 33, 1559–1569 (2024). https://doi.org/10.1007/s11666-024-01774-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-024-01774-8

Keywords

Navigation