Log in

Structure and Oxidation Behavior of a Chromium Coating on Zr Alloy Cladding Tubes Deposited by High-Speed Laser Cladding

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A dense and continuous Cr coating with a thickness of approximately 140 μm was successfully deposited on the surface of a thin-walled Zr alloy cladding tube using high-speed laser cladding technology in this study. The microstructure, phase composition, microhardness, and resistance to high-temperature oxidation of the coating were investigated. The experimental results showed that the Cr coating exhibited high-strength metallurgical bond with the Zr alloy substrate, forming a narrow heat-affected zone with a thickness of 25 μm, and the coating consists of ZrCr2 and α-Zr phase. The average microhardness of the coating was 589 HV0.05, about 2.3 times that of the substrate. After oxidation at 1200 °C for 1200 s in air, with the formation of complete and dense protective Cr2O3 scale, the Cr-coated Zr alloy cladding tube showed better high-temperature oxidation resistance than uncoated tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.H. Park, H.G. Kim, J.Y. Park, Y.I. Jung, D.J. Park, and Y.H. Koo, High Temperature Steam-Oxidation Behavior of Arc Ion Plated Cr Coatings for Accident Tolerant Fuel Claddings, Surf. Coat. Technol., 2015, 280, p 256-259. https://doi.org/10.1016/j.surfcoat.2015.09.022

    Article  CAS  Google Scholar 

  2. A.S. Kuprin, V.A. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, and P.N. V’Yugov, Vacuum-Arc Chromium-Based Coatings for Protection of Zirconium Alloys from the High-Temperature Oxidation in Air, J. Nucl. Mater., 2015, 465, p 400-406. https://doi.org/10.1016/j.jnucmat.2015.06.016

    Article  ADS  CAS  Google Scholar 

  3. I. Younker and M. Fratoni, Neutronic Evaluation of Coating and Cladding Materials for Accident Tolerant Fuels, Prog. Nucl. Energy, 2016, 88, p 10-18. https://doi.org/10.1016/j.pnucene.2015.11.006

    Article  CAS  Google Scholar 

  4. E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, and D.E. Wolfe, Ceramic Coating for Corrosion (c3) Resistance of Nuclear Fuel Cladding, Surf. Coat. Technol., 2015, 281, p 133-143. https://doi.org/10.1016/j.surfcoat.2015.08.062

    Article  CAS  Google Scholar 

  5. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, and L.L. Snead, Accident Tolerant Fuels for LWRs: A Perspective, J. Nucl. Mater., 2014, 448(1), p 374-379. https://doi.org/10.1016/j.jnucmat.2013.12.005

    Article  ADS  CAS  Google Scholar 

  6. L.J. Ott, K.R. Robb, and D. Wang, Preliminary Assessment of Accident-Tolerant Fuels on LWR Performance During Normal Operation and Under DB and BDB Accident Conditions, J. Nucl. Mater., 2014, 448(1), p 520-533. https://doi.org/10.1016/j.jnucmat.2013.09.052

    Article  ADS  CAS  Google Scholar 

  7. R.B. Rebak, Alloy Selection for Accident Tolerant Fuel Cladding in Commercial Light Water Reactors, Metall. Mater. Trans. E, 2015, 2(4), p 197-207. https://doi.org/10.1007/s40553-015-00576

    Article  CAS  Google Scholar 

  8. L. Duc Huy, P. Laffez, P. Daniel, A. Jouanneaux, N. The Khoi, and D. Siméone, Structure and Phase Component of ZrO2 Thin Films Studied by Raman Spectroscopy and X-ray Diffraction, Mater. Sci. Eng. B., 2003, 104(3), p 163-168. https://doi.org/10.1016/S0921-5107(03)00190-9

    Article  CAS  Google Scholar 

  9. Y. Al-Olayyan, G.E. Fuchs, R. Baney, and J. Tulenko, The Effect of Zircaloy-4 Substrate Surface Condition on the Adhesion Strength and Corrosion of SiC Coatings, J. Nucl. Mater., 2005, 346(2), p 109-119. https://doi.org/10.1016/j.jnucmat.2005.05.016

    Article  ADS  CAS  Google Scholar 

  10. K. Daub, R. Van Nieuwenhove, and H. Nordin, Investigation of the Impact of Coatings on Corrosion and Hydrogen Uptake of Zircaloy-4, J. Nucl. Mater., 2015, 467, p 260-270. https://doi.org/10.1016/j.jnucmat.2015.09.041

    Article  ADS  CAS  Google Scholar 

  11. T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, and B.A. Pint, Oxidation of Fuel Cladding Candidate Materials in Steam Environments at High Temperature and Pressure, J. Nucl. Mater., 2012, 427(1), p 396-400. https://doi.org/10.1016/j.jnucmat.2012.05.007

    Article  ADS  CAS  Google Scholar 

  12. Z. Feng, P. Ke, and A. Wang, Preparation of Ti2AlC MAX Phase Coating by DC Magnetron Sputtering Deposition and Vacuum Heat Treatment, J. Mater. Sci. Technol., 2015, 31(12), p 1193-1197. https://doi.org/10.1016/j.jmst.2015.10.014

    Article  CAS  Google Scholar 

  13. D.J. Tallman, L. He, B.L. Garcia-Diaz, E.N. Hoffman, G. Kohse, R.L. Sindelar, and M.W. Barsoum, Effect of Neutron Irradiation on Defect Evolution in Ti3SiC2 and Ti2AlC, J. Nucl. Mater., 2016, 468, p 194-206. https://doi.org/10.1016/j.jnucmat.2015.10.030

    Article  ADS  CAS  Google Scholar 

  14. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, and Y.H. Koo, Adhesion Property and High-Temperature Oxidation Behavior of Cr-coated Zircaloy-4 Cladding Tube Prepared by 3D Laser Coating, J. Nucl. Mater., 2015, 465, p 531-539. https://doi.org/10.1016/j.jnucmat.2015.06.030

    Article  ADS  CAS  Google Scholar 

  15. H.G. Kim, J.H. Yang, W.J. Kim, and Y.H. Koo, Development Status of Accident-Tolerant Fuel for Light Water Reactors in Korea, Nucl. Eng. Technol., 2016, 48(1), p 1-15. https://doi.org/10.1016/j.net.2015.11.011

    Article  Google Scholar 

  16. Y. Wang, W. Zhou, Q. Wen, X. Ruan, F. Luo, G. Bai, Y. Qing, D. Zhu, Z. Huang, Y. Zhang, T. Liu, and R. Li, Behavior of Plasma Sprayed Cr Coatings and FeCrAl Coatings on Zr Fuel Cladding Under Loss-of-Coolant Accident Conditions, Surf. Coat. Technol., 2018, 344, p 141-148. https://doi.org/10.1016/j.surfcoat.2018.03.016

    Article  CAS  Google Scholar 

  17. T. Usui, A. Sawada, M. Amaya, A. Suzuki, T. Chikada, and T. Terai, SiC Coating as Hydrogen Permeation Reduction and Oxidation Resistance for Nuclear Fuel Cladding, J. Nucl. Sci. Technol., 2015, 52(10), p 1318-1322. https://doi.org/10.1080/00223131.2015.1020901

    Article  CAS  Google Scholar 

  18. E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, and D.E. Wolfe, Multilayer (TiN, TiAlN) Ceramic Coatings for Nuclear Fuel Cladding, J. Nucl. Mater., 2016, 478, p 236-244. https://doi.org/10.1016/j.jnucmat.2016.05.021

    Article  ADS  CAS  Google Scholar 

  19. Z.B. Qi, B. Liu, Z.T. Wu, F.P. Zhu, Z.C. Wang, and C.H. Wu, A Comparative Study of the Oxidation Behavior of Cr2N and CrN Coatings, Thin Solid Films, 2013, 544, p 515-520. https://doi.org/10.1016/j.tsf.2013.01.031

    Article  ADS  CAS  Google Scholar 

  20. Y.C. Chim, X.Z. Ding, X.T. Zeng, and S. Zhang, Oxidation Resistance of TiN, CrN, TiAlN and CrAlN Coatings Deposited by Lateral Rotating Cathode Arc, Thin Solid Films, 2009, 517(17), p 4845-4849. https://doi.org/10.1016/j.tsf.2009.03.038

    Article  ADS  CAS  Google Scholar 

  21. A. Michau, F. Maury, F. Schuster, F. Lomello, J.C. Brachet, E. Rouesne, M. Le Saux, R. Boichot, and M. Pons, High-Temperature Oxidation Resistance of Chromium-Based Coatings Deposited by DLI-MOCVD for Enhanced Protection of the Inner Surface of Long Tubes, Surf. Coat. Technol., 2018, 349, p 1048-1057. https://doi.org/10.1016/j.surfcoat.2018.05.088

    Article  CAS  Google Scholar 

  22. A. Fazi, M. Sattari, K. Stiller, H.O. Andrén, and M. Thuvander, Performance and Evolution of Cold Spray Cr-Coated Optimized ZIRLO™ Claddings Under Simulated Loss-of-Coolant Accident Conditions, J. Nucl. Mater., 2023, 576, p 154268.

    Article  CAS  Google Scholar 

  23. D. Wang, R. Zhong, Y. Zhang, P. Chen, Y. Lan, J. Yu, G.H. Su, S. Qiu, and W. Tian, Isothermal Experiments on Steam Oxidation of Magnetron-Sputtered Chromium-Coated Zirconium Alloy Cladding at 1200 °C, Corros. Sci., 2022, 206, p 110544.

    Article  CAS  Google Scholar 

  24. M. Huang, Y. Li, G. Ran, Z. Yang, and P. Wang, Cr-Coated Zr-4 Alloy Prepared by Electroplating and Its in Situ He+ Irradiation Behavior, J. Nucl. Mater., 2020, 538, p 152240.

    Article  CAS  Google Scholar 

  25. J.C. Pereira, J.C. Zambrano, M.J. Tobar, A. Yañez, and V. Amigó, High Temperature Oxidation Behavior of Laser Cladding MCrAlY Coatings on Austenitic Stainless Steel, Surf. Coat. Technol., 2015, 270, p 243-248. https://doi.org/10.1016/j.surfcoat.2015.02.050

    Article  CAS  Google Scholar 

  26. T. Schopphoven, A. Gasser, and G. Backes, EHLA: Extreme High-Speed Laser Material Deposition, Laser Technol. J., 2017, 14(4), p 26-29. https://doi.org/10.1002/latj.201700020

    Article  Google Scholar 

  27. T. Schopphoven, A. Gasser, K. Wissenbach, and R. Poprawe, Investigations on Ultra-High-Speed Laser Material Deposition as Alternative for Hard Chrome Plating and Thermal Spraying, J. Laser Appl., 2016, 28(2), p 022501. https://doi.org/10.2351/1.4943910

    Article  ADS  CAS  Google Scholar 

  28. L.Y. Lou, K.C. Liu, Y.J. Jia, G. Ji, W. Wang, C.J. Li, and C.X. Li, Microstructure and Properties of Lightweight Al0.2CrNbTiV Refractory High Entropy Alloy Coating with Different Dilutions Deposited by High Speed Laser Cladding, Surf. Coat. Technol., 2022, 447, p 128873.

    Article  CAS  Google Scholar 

  29. L.Q. Li, F.M. Shen, Y.D. Zhou, W. Tao, W. Wang, and S.L. Wang, Comparison of Microstructure and Corrosion Resistance of 431 Stainless Steel Coatings Prepared by Extreme High-Speed Laser Cladding and Conventional Laser Cladding, Chin. J. Lasers, 2019, 46, p 1002010.

    Google Scholar 

  30. L.Y. Lou, Y. Zhang, Y.J. Jia, Y. Li, H.F. Tian, Y.J. Cai, and C.X. Li, High Speed Laser Cladded Ti-Cu-NiCoCrAlTaY Burn Resistant Coating and its Oxidation Behavior, Surf. Coat. Technol., 2020, 392, p 125697. https://doi.org/10.1016/j.surfcoat.2020.125697

    Article  CAS  Google Scholar 

  31. H.X. Liu, X.W. Zhang, Y.H. Jiang, and R. Zhou, Microstructure and High Temperature Oxidation Resistance of in-situ Synthesized TiN/Ti3Al Intermetallic Composite Coatings on Ti6Al4V Alloy by Laser Cladding Process, J. Alloys Compd., 2016, 670, p 268-274.

    Article  CAS  Google Scholar 

  32. Z. Liu, K.C. Chan, L. Liu, and S.F. Guo, Bioactive Calcium Titanate Coatings on a Zr-Based Bulk Metallic Glass by Laser Cladding, Mater. Lett., 2012, 82, p 67-70.

    Article  CAS  Google Scholar 

  33. B. Li, H. Yang, R. Holmes, Z. Wei, S. Kano, and H. Abe, Microstructure Evolution and Mechanical Property of High Temperature Solid-State Diffusion Bonded Cr-Zry4 with and without a 316 SS Interlayer, Nucl. Mater. Energy, 2022, 32, p 101233. https://doi.org/10.1016/j.nme.2022.101233

    Article  CAS  Google Scholar 

  34. T. Ohta, Y. Nakagawa, Y. Kaneno, H. Inoue, T. Takasugi, and W.Y. Kim, Microstructures and Mechanical Properties of NbCr2 and ZrCr2 Laves Phase Alloys Prepared by Powder Metallurgy, J. Mater. Sci., 2003, 38(4), p 657-665. https://doi.org/10.1023/A:1021807519728

    Article  ADS  CAS  Google Scholar 

  35. S. Kanazawa, Y. Kaneno, H. Inoue, W.Y. Kim, and T. Takasugi, Microstructures and Defect Structures in ZrCr2 Laves Phase Based Intermetallic Compounds, Intermetallics, 2002, 10(8), p 783-792. https://doi.org/10.1016/S0966-9795(02)00057-2

    Article  CAS  Google Scholar 

  36. H. Zhang, Y.Z. He, Y. Pan, Y.S. He, and K.S. Shin, Synthesis and Characterization of NiCoFeCrAl3 High Entropy Alloy Coating by Laser Cladding, Adv. Mater. Res., 2010, 97-101, p 1408-1411. https://doi.org/10.4028/www.scientific.net/AMR.97-101.1408

    Article  CAS  Google Scholar 

  37. L. Zhang, C. Dong, C.S. Wang, and Q. Wang, Laser Cladding of Fe-B-Si Iron Base Amorphous Composite Materials on 45 Steel Surface, Trans. Mater. Heat Treat., 2012, 33(10), p 116-123.

    Google Scholar 

  38. Z.G. Zhang, Z.H. Feng, X.J. Jiang, X.Y. Zhang, M.Z. Ma, and R.P. Liu, Microstructure and Tensile Properties of Novel Zr-Cr Binary Alloys Processed by Hot Rolling, Mater. Sci. Eng. A, 2016, 652, p 77--83. https://doi.org/10.1016/j.msea.2015.11.045

    Article  CAS  Google Scholar 

  39. M. Guerain, C. Duriez, J.L. Grosseau-Poussard, and M. Mermoux, Review of Stress Fields in Zirconium Alloys Corrosion Scales, Corros. Sci., 2015, 95, p 11-21. https://doi.org/10.1016/j.corsci.2015.03.004

    Article  CAS  Google Scholar 

  40. B. Krebs, J. Desquines, V. Busser, D. Drouan, and O. Zanellato, Experimental Characterization of Zircaloy-4 Sheet Deformation During Combined Hydriding and Corrosion, J. Nucl. Mater., 2013, 435(1), p 41-48. https://doi.org/10.1016/j.jnucmat.2012.12.019

    Article  ADS  CAS  Google Scholar 

  41. C. Meng, L. Yang, Y. Wu, J. Tan, W. Dang, X. He, and X. Ma, Study of the Oxidation Behavior of CrN Coating on Zr Alloy in Air, J. Nucl. Mater., 2019, 515, p 354-369. https://doi.org/10.1016/j.jnucmat.2019.01.006

    Article  ADS  CAS  Google Scholar 

  42. M. Andritschky and P. Alpuim, Strength Measurements of Thin Brittle ZrO2 Coatings Produced by Magnetron Sputtering on Steel Substrates, Vacuum, 1997, 48(5), p 417-422. https://doi.org/10.1016/S0042-207X(97)00004-3

    Article  ADS  CAS  Google Scholar 

  43. P.B. Bozzano, C. Ramos, F. Saporiti, P.A. Vázquez, R.A. Versaci, and C. Saragovi, Oxidation of the Hexagonal Zr(Cr0.4Fe0.6)2 Laves Phase, J. Nucl. Mater., 2004, 328(2), p 225-231.

    Article  ADS  CAS  Google Scholar 

  44. L.L. Luo, L.F. Zou, D.K. Schreiber, D.R. Baer, S.M. Bruemmer, G.W. Zhou, and C.M. Wang, In-situ Transmission Electron Microscopy Study of Surface Oxidation for Ni-10Cr and Ni-20Cr Alloys, Scr. Mater., 2016, 114, p 129-132. https://doi.org/10.1016/j.scriptamat.2015.11.031

    Article  CAS  Google Scholar 

  45. X. Peng, L. Li, and F. Wang, Application of AFM in a Study of the Selective Oxidation Behavior of Materials During the Early Oxidation Stage, Scr. Mater., 2009, 60(8), p 699-702. https://doi.org/10.1016/j.scriptamat.2008.12.056

    Article  CAS  Google Scholar 

  46. J.J. Dai, J.Y. Zhu, C.Z. Chen, and F. Weng, High Temperature Oxidation Behavior and Research Status of Modifications on Improving High Temperature Oxidation Resistance of Titanium Alloys and Titanium Aluminides: A review, J. Alloys Compd., 2016, 685, p 784-798. https://doi.org/10.1016/j.jallcom.2016.06.212

    Article  CAS  Google Scholar 

  47. R.E. Lobnig, H.P. Schmidt, K. Hennesen, and H.J. Grabke, Diffusion of Cations in Chromia Layers Grown on Iron-Base Alloys, Oxid. Met., 1992, 37(1), p 81-93.

    Article  CAS  Google Scholar 

  48. A.H. Chokshi, Diffusion, Diffusion Creep and Grain Growth Characteristics of Nanocrystalline and Fine-Grained Monoclinic, Tetragonal and Cubic Zirconia, Scr. Mater., 2003, 48(6), p 791-796. https://doi.org/10.1016/S1359-6462(02)00519-5

    Article  CAS  Google Scholar 

  49. M. Kilo, G. Borchardt, S. Weber, S. Scherrer, K. Tinschert, B. Lesage, and O. Kaïtasov, Cation Diffusion in Calcia Stabilized Zirconia (CSZ), Radiat. Eff. Defects Solids, 1999, 151(1-4), p 29-33. https://doi.org/10.1080/10420159908245933

    Article  ADS  Google Scholar 

  50. M. Kilo, M.A. Taylor, C. Argirusis, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, H. Scherrer, M. Schroeder, and M. Martin, Cation Self-Diffusion of 44Ca, 88Y, and 96Zr in Single-Crystalline Calcia- and Yttria-Doped Zirconia, J. Appl. Phys., 2003, 94(12), p 7547-7552. https://doi.org/10.1063/1.1628379

    Article  ADS  CAS  Google Scholar 

  51. M.A. Taylor, M. Kilo, G. Borchardt, S. Weber, and H. Scherrer, 96Zr Diffusion in Polycrystalline Scandia Stabilized Zirconia, J. Eur. Ceram. Soc., 2005, 25(9), p 1591-1595.

    Article  CAS  Google Scholar 

  52. J.C. Brachet, I. Idarraga-Trujillo, M.L. Flem, M.L. Saux, V. Vandenberghe, S. Urvoy, E. Rouesne, T. Guilbert, C. Toffolon-Masclet, M. Tupin, C. Phalippou, F. Lomello, F. Schuster, A. Billard, G. Velisa, C. Ducros, and F. Sanchette, Early Studies on Cr-Coated Zircaloy-4 as Enhanced Accident Tolerant Nuclear Fuel Claddings for Light Water Reactors, J. Nucl. Mater., 2019, 517, p 268-285. https://doi.org/10.1016/j.jnucmat.2019.02.018

    Article  ADS  CAS  Google Scholar 

  53. Y.G. Bai and C.M. Liu, High Resolution Auger Electron Spectroscopy Analysis on Grain Boundaries of High Purity Fe-0.2%P-2%Cr-C Alloys, J. Northeast. Univ. (Nat. Sci.), 2013, 24(4), p 373-376.

    CAS  Google Scholar 

  54. A.G. Revesz and F.P. Fehlner, The Role of Noncrystalline Films in the Oxidation and Corrosion of Metals, Oxid. Met., 1981, 15(3), p 297-321. https://doi.org/10.1007/BF01058831

    Article  CAS  Google Scholar 

  55. C. Corvalán Moya, M.J. Iribarren, N. Di Lalla, and F. Dyment, Grain Boundary Diffusion and Segregation of Cr in α-Zr, J. Nucl. Mater., 2008, 382(1), p 35-38. https://doi.org/10.1016/j.jnucmat.2008.09.011

    Article  ADS  CAS  Google Scholar 

  56. E. Wierzbicka, K. Syrek, G.D. Sulka, M. Pisarek, and M. Janik-Czachor, The Effect of Foil Purity on Morphology of Anodized Nanoporous ZrO2, Appl. Surf. Sci., 2016, 388, p 799-804. https://doi.org/10.1016/j.apsusc.2016.02.178

    Article  ADS  CAS  Google Scholar 

  57. Y. Wang, B. Chen, X.Z. Wang, M.J. Chen, S.L. Li, G.H. Bai, J.S. Li, and W.J. Gong, Evolution of Cr/Cr2O3 Interface in Cr-Coated Zirconium Alloy in High Temperature Steam, Corros. Sci., 2023, 217, p 111099. https://doi.org/10.1016/j.corsci.2023.111099

    Article  CAS  Google Scholar 

  58. J.H. Huang, S.L. Zou, W.W. **ao, C. Yang, H.X. Yu, L. Zhang, and K. Zhang, Microstructural Evolution of Cr-Coated Zr-4 Alloy Prepared by Multi-arc Ion Plating During High Temperature Oxidation, J. Nucl. Mater., 2022, 562, p 153616.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors appreciate the financial support for this work from Tian** Natural Science Foundation (No. 22JCYBJC01650), 145 Project, NSFC (52130509), Tian** Education Committee (No. 2020KJ108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Yan Lou or Cheng-**n Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lou, LY., Liu, KC. et al. Structure and Oxidation Behavior of a Chromium Coating on Zr Alloy Cladding Tubes Deposited by High-Speed Laser Cladding. J Therm Spray Tech 33, 246–259 (2024). https://doi.org/10.1007/s11666-023-01698-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-023-01698-9

Keywords

Navigation